login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q^(-1/8) * eta(q) * eta(q^2) in powers of q.
8

%I #45 Sep 08 2022 08:44:50

%S 1,-1,-2,1,0,2,1,0,0,-2,1,-2,-2,0,2,-1,0,2,0,2,0,1,0,0,-2,0,0,0,-1,-2,

%T -2,0,2,0,0,-2,3,0,0,2,0,0,2,0,2,-1,-2,0,0,0,-2,2,0,-2,-2,-1,-2,2,0,0,

%U 0,0,0,0,0,2,1,0,0,0,0,2,2,0,2,-2,0,-2,1,0

%N Expansion of q^(-1/8) * eta(q) * eta(q^2) in powers of q.

%C Number 66 of the 74 eta-quotients listed in Table I of Martin (1996).

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C A030204, A083650 and A138514 are the same except for signs. - _N. J. A. Sloane_, May 07 2010

%H Seiichi Manyama, <a href="/A030204/b030204.txt">Table of n, a(n) for n = 0..10000</a>

%H S. R. Finch, <a href="http://arXiv.org/abs/math.NT/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.

%H M. Koike, <a href="http://projecteuclid.org/euclid.nmj/1118787564">On McKay's conjecture</a>, Nagoya Math. J., 95 (1984), 85-89.

%H Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H J. B. Tunnell, <a href="http://dx.doi.org/10.1007/BF01389327">A classical Diophantine problem and modular forms of weight 3/2</a>, Invent. Math., 72 (1983), 323-334. [a(n) = coefficient of q^(9m+1) in the q-expansion of the unique normalized newform g of weight 1, level 128, and character chi_2. - _N. J. A. Sloane_, Oct 18 2014]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k)).

%F G.f.: (Sum_{k>0} x^((k^2 - k)/2)) * (Sum_{k in Z} (-1)^k * x^k^2). - _Michael Somos_, Sep 02 2006

%F Expansion of psi(x) * phi(-x) = f(-x^2) * f(-x) = f(-x)^2 / chi(-x) = f(-x)^3 / phi(-x) = f(-x^2)^2 * chi(-x) = f(-x^2)^3 / psi(x) = psi(-x) * phi(-x^2) = psi(x)^2 * chi(-x)^3 = phi(-x)^2 / chi(-x)^3 = (f(-x)^3 * psi(x))^(1/2) = (f(-x^2)^3 * phi(-x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - _Michael Somos_, Mar 22 2008

%F Expansion of psi(x) * psi(-x) in powers of x^2 where psi() is a Ramanujan theta function. - _Michael Somos_, Oct 11 2013

%F Euler transform of period 2 sequence [ -1, -2, ...].

%F a(3*n) = A107063(n). a(3*n + 2) = -2 * A107064(n). - _Michael Somos_, Oct 11 2013

%F a(9*n + 1) = -a(n), a(9*n + 4) = a(9*n + 7) = 0. - _Michael Somos_, Mar 17 2004

%F a(n) = b(8*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = 0 if p === 3,5,7 (mod 8) and e odd, b(p^e) = (-1)^(e/2) if p == 3 (mod 8) and e even, b(p^e) = 1 if p == 5,7 (mod 8) and e even, b(p^e) = e + 1 if p == 1 (mod 8) and p = x^2 + 32*y^2, b(p^e) = (-1)^e * (e + 1) if p == 1 (mod 8) and p is not of the form x^2 + 32*y^2.

%F a(n) = (-1)^n * A138514(n). Convolution inverse is A002513.

%F G.f.: exp(Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - _Ilya Gutkovskiy_, Sep 19 2018

%e G.f. = 1 - x - 2*x^2 + x^3 + 2*x^5 + x^6 - 2*x^9 + x^10 - 2*x^11 - 2*x^12 + ...

%e G.f. = q - q^9 - 2*q^17 + q^25 + 2*q^41 + q^49 - 2*q^73 + q^81 - 2*q^89 - 2*q^97 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2], {x, 0, n}]; (* _Michael Somos_, Oct 11 2013 *)

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 / QPochhammer[ x, x^2], {x, 0, n}]; (* _Michael Somos_, Oct 11 2013 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}]; (* _Michael Somos_, Oct 11 2013 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, I x] / (4 Sqrt[ x] I^(1/4)), {x, 0, 4 n}]; (* _Michael Somos_, Oct 11 2013 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, Pi/4, x] / (2^(3/2) x^(1/2)), {x, 0, 4 n}]; (* _Michael Somos_, Jan 31 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A), n))};

%o (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 8*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p%8==1, (e + 1) * if( qfbclassno(-4*p)%8, (-1)^e, 1), e%2==0, (-1)^(e/2*(p%8<5)))))}; /* _Michael Somos_, Jul 26 2006 */

%o (PARI) {a(n) = if( n<0, 0, n = 8*n + 1; (qfrep([1, 0;0, 32], n) - qfrep([4, 2; 2, 9], n))[n])}; /* _Michael Somos_, Sep 02 2006 */

%o (Magma) Basis( CuspForms( Gamma1(128), 1), 641)[1]; /* _Michael Somos_, Jan 31 2015 */

%Y Cf. A000203, A002513, A107063, A107064, A138514.

%K sign

%O 0,3

%A _N. J. A. Sloane_.