login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030202
Expansion of q^(-1/4) * eta(q) * eta(q^5) in powers of q.
3
1, -1, -1, 0, 0, 0, 1, 2, 0, 0, -2, 1, -1, 0, 0, -2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, -2, 0, 0, 1, -1, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 2, 0, 0, -2, 1, 0, 0, 0, -2, 0, -2, 0, 0, -2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, -2, 0, 0, 2, -1, -2, 0, 0
OFFSET
0,8
COMMENTS
Number 62 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Bruce Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see page 44.
LINKS
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x, -x^4) * f(-x^2, -x^3) in powers of x where f() is the Ramanujan two-variable theta function.
Expansion of q^(-1) * (phi(q) * phi(q^20) - phi(q^4) * phi(q^5)) / 2 in powers of q^4 where phi() is a Ramanujan theta function.
Euler transform of period 5 sequence [ -1, -1, -1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20), b(p^e) = (i^n +(-i)^n)/2 if p == 3, 7 (mod 20), b(p^e) = (-1)^(e*y) * (e+1) if p == 1, 9 (mod 20) where p = x^2 + 5*y^2. - Michael Somos, Sep 04 2007
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(5*k)).
a(5*n + 3) = a(5*n + 4) = a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = -a(n). - Michael Somos, May 16 2015
Convolution square is A030205. - Michael Somos, May 16 2015
a(n) = (-1)^n * A159818(n). - Michael Somos, May 16 2015
EXAMPLE
G.f. = 1 - x - x^2 + x^6 + 2*x^7 - 2*x^10 + x^11 - x^12 - 2*x^15 + x^20 + ...
G.f. = q - q^5 - q^9 + q^25 + 2*q^29 - 2*q^41 + q^45 - q^49 - 2*q^61 + q^81 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^5], {x, 0, n}] (* Michael Somos, Aug 08 2011 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 1, Pi/5, q^2] EllipticTheta[ 1, 2 Pi/5, q^2] / Sqrt[5], {q, 0, 4 n + 1}] // FullSimplify; (* Michael Somos, Aug 08 2011 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( eta(x^5 + x * O(x^n)) * eta(x + x * O(x^n)), n))}; /* Michael Somos, Sep 04 2007 */
(PARI) {a(n) = my(A, p, e, x, y); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==5, (-1)^e, p%20>10, !(e%2), p%4==3, kronecker( -4, e+1), for( y=1, sqrtint(p\5), if( issquare(p - 5*y^2), x=y; break)); (-1)^(e*x) * (e+1))))}; /* Michael Somos, Sep 04 2007 */
(Magma) Basis( CuspForms( Gamma1(80), 1), 413)[1]; /* Michael Somos, May 16 2015 */
CROSSREFS
KEYWORD
sign,easy
AUTHOR
STATUS
approved