Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:44:50
%S 1,-1,-1,0,0,0,1,2,0,0,-2,1,-1,0,0,-2,0,0,0,0,1,0,2,0,0,2,0,-2,0,0,1,
%T -1,0,0,0,0,-2,-2,0,0,0,0,1,0,0,2,0,0,0,0,0,2,0,0,0,0,-1,2,0,0,-2,1,0,
%U 0,0,-2,0,-2,0,0,-2,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,2,0,0,0,0,-2,0,0,2,-1,-2,0,0
%N Expansion of q^(-1/4) * eta(q) * eta(q^5) in powers of q.
%C Number 62 of the 74 eta-quotients listed in Table I of Martin (1996).
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%D Bruce Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see page 44.
%H Seiichi Manyama, <a href="/A030202/b030202.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Koike, <a href="http://projecteuclid.org/euclid.nmj/1118787564">On McKay's conjecture</a>, Nagoya Math. J., 95 (1984), 85-89.
%H Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of f(-x, -x^4) * f(-x^2, -x^3) in powers of x where f() is the Ramanujan two-variable theta function.
%F Expansion of q^(-1) * (phi(q) * phi(q^20) - phi(q^4) * phi(q^5)) / 2 in powers of q^4 where phi() is a Ramanujan theta function.
%F Euler transform of period 5 sequence [ -1, -1, -1, -1, -2, ...].
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
%F a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20), b(p^e) = (i^n +(-i)^n)/2 if p == 3, 7 (mod 20), b(p^e) = (-1)^(e*y) * (e+1) if p == 1, 9 (mod 20) where p = x^2 + 5*y^2. - _Michael Somos_, Sep 04 2007
%F G.f.: Product_{k>0} (1 - x^k) * (1 - x^(5*k)).
%F a(5*n + 3) = a(5*n + 4) = a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = -a(n). - _Michael Somos_, May 16 2015
%F Convolution square is A030205. - _Michael Somos_, May 16 2015
%F a(n) = (-1)^n * A159818(n). - _Michael Somos_, May 16 2015
%e G.f. = 1 - x - x^2 + x^6 + 2*x^7 - 2*x^10 + x^11 - x^12 - 2*x^15 + x^20 + ...
%e G.f. = q - q^5 - q^9 + q^25 + 2*q^29 - 2*q^41 + q^45 - q^49 - 2*q^61 + q^81 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^5], {x, 0, n}] (* _Michael Somos_, Aug 08 2011 *)
%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 1, Pi/5, q^2] EllipticTheta[ 1, 2 Pi/5, q^2] / Sqrt[5], {q, 0, 4 n + 1}] // FullSimplify; (* _Michael Somos_, Aug 08 2011 *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( eta(x^5 + x * O(x^n)) * eta(x + x * O(x^n)), n))}; /* _Michael Somos_, Sep 04 2007 */
%o (PARI) {a(n) = my(A, p, e, x, y); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==5, (-1)^e, p%20>10, !(e%2), p%4==3, kronecker( -4, e+1), for( y=1, sqrtint(p\5), if( issquare(p - 5*y^2), x=y; break)); (-1)^(e*x) * (e+1))))}; /* _Michael Somos_, Sep 04 2007 */
%o (Magma) Basis( CuspForms( Gamma1(80), 1), 413)[1]; /* _Michael Somos_, May 16 2015 */
%Y Cf. A030205, A030210, A159818.
%K sign,easy
%O 0,8
%A _N. J. A. Sloane_.