login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156996
Triangle T(n, k) = coefficients of p(n,x), where p(n,x) = Sum_{j=0..n} (2*n*(n-j)!/(2*n-j)) * binomial(2*n-j, j) * (x-1)^j and p(0,x) = 1, read by rows.
1
1, -1, 2, 0, 0, 2, 1, 0, 3, 2, 2, 8, 4, 8, 2, 13, 30, 40, 20, 15, 2, 80, 192, 210, 152, 60, 24, 2, 579, 1344, 1477, 994, 469, 140, 35, 2, 4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2, 43387, 97434, 104256, 70152, 32958, 11268, 2856, 504, 63, 2, 439792, 976000, 1036050, 695760, 328920, 115056, 30300, 6000, 840, 80, 2
OFFSET
0,3
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 197-199
LINKS
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
Anthony C. Robin, 90.72 Circular Wife Swapping, The Mathematical Gazette, Vol. 90, No. 519 (Nov., 2006), pp. 471-478.
L. Takacs, On the probleme des menages, Discr. Math. 36 (3) (1981) 289-297, Table 1.
FORMULA
T(n, k) = coefficients of p(n,x), where p(n,x) = Sum_{j=0..n} (2*n*(n-j)!/(2*n-j)) * binomial(2*n-j, j) * (x-1)^j and p(0,x) = 1.
Sum_{k=0..n} T(n, k) = n!.
From G. C. Greubel, May 14 2021: (Start)
T(n, 0) = A000179(n).
T(n, k) = Sum_{j=k..n} (-1)^(j+k)*(2*n*(n-j)!/(2*n-j))*binomial(j, k)*binomial(2*n-j, j), with T(0, k) = 1. (End)
EXAMPLE
Triangle begins as:
1;
-1, 2;
0, 0, 2;
1, 0, 3, 2;
2, 8, 4, 8, 2;
13, 30, 40, 20, 15, 2;
80, 192, 210, 152, 60, 24, 2;
579, 1344, 1477, 994, 469, 140, 35, 2;
4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2;
43387, 97434, 104256, 70152, 32958, 11268, 2856, 504, 63, 2;
439792, 976000, 1036050, 695760, 328920, 115056, 30300, 6000, 840, 80, 2;
MATHEMATICA
(* first program *)
Table[CoefficientList[If[n==0, 1, Sum[Binomial[2*n-k, k]*(n-k)!*(2*n/(2*n-k))*(x- 1)^k, {k, 0, n}]], x], {n, 0, 12}]//Flatten
(* Second program *)
T[n_, k_]:= If[n==0, 1, Sum[(-1)^(j-k)*(2*n*(n-j)!/(2*n-j))*Binomial[j, k]*Binomial[2*n-j, j], {j, k, n}]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 14 2021 *)
PROG
(Magma)
A156996:= func< n, k | n eq 0 select 1 else (&+[(-1)^(j-k)*(2*n*Factorial(n-j)/(2*n-j))*Binomial(j, k)*Binomial(2*n-j, j): j in [k..n]]) >;
[A156996(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
(Sage)
def A156996(n, k): return 1 if (n==0) else sum( (-1)^(j-k)*(2*n*factorial(n-j)/(2*n-j))*binomial(j, k)*binomial(2*n-j, j) for j in (k..n) )
flatten([[A156996(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 20 2009
EXTENSIONS
Edited by G. C. Greubel, May 14 2021
STATUS
approved