The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156997 Smaller of a and b if a^2+b^2=c^2 and the sum of the distinct prime divisors of a and b is the sum of the distinct prime divisors of c. 1
 3, 6, 9, 12, 18, 24, 27, 36, 48, 54, 56, 60, 72, 81, 96, 108, 112, 120, 144, 162, 180, 192, 216, 224, 240, 243, 288, 300, 319, 324, 360, 384, 392, 399, 432, 448, 480, 486, 504, 540, 576, 600, 638, 648, 720, 728, 729, 768, 784, 798, 864, 896, 900, 957, 972, 1008, 1152, 1176, 1276, 1296, 1400, 1456, 1458 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 15 divides abc. Since we define a=2mu and b=m^2-b^2, the order of the triple that generates a(n) can have the first term greater than the second term. For this reason I chose to list the smaller of a and b. The idea for this sequence comes from a post in the Yahoo group mathforfun which is in the link. LINKS Cino Hilliard and others, Pythagorean Theorem and prime factors, digest of 9 messages in mathforfun Yahoo group, Feb 20 - Feb 21, 2009. [Cached copy] MathForFun, Pythagorean triple digital sums. FORMULA Let a,b,c, m > u,k be positive integers. If a^2 + b^2 = c^2 then a = k*2mu,b=k*(m^2-u^2) and c=k*(m^2+u^2). EXAMPLE 360^2+319^2=481^2. 360=2^3*3^2*5,319=11*29 and 481=13*37. 2+3+5+11+29=13+37. So 319 is in the sequence. PROG (PARI) pythsum(n) = { local(v, x, a, b, cm, k, u, s, ct=0); v=vector(400); for(m=1, n+n, for(u=1, n, for(k=1, n, a=2*m*u*k; if(u>m, b=k*(u^2-m^2), b=k*(m^2-u^2)); c=k*(m^2+u^2); fa=ifactord(a); fb=ifactord(b); fc=ifactord(c); s=0; s2=0; for(a1=1, length(fa), s+=fa[a1]); for(b1=1, length(fb), s+=fb[b1]); for(c1=1, length(fc), s2+=fc[c1]); if(s==s2&&b>0, \\print(m", "u", "k", "a", "b", "c", " fa" + "fb" = "fc); ct++; if(a0&&y[x]<>y[x+1], print1(y[x]", "))); } ifactord(n) = /* The vector of the distinct integer factors of n. */ { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f[1]), flist = concat(flist, f[1][j]) ); return(flist) } CROSSREFS Sequence in context: A310156 A231960 A052287 * A063996 A065119 A293396 Adjacent sequences:  A156994 A156995 A156996 * A156998 A156999 A157000 KEYWORD nonn AUTHOR Cino Hilliard, Feb 20 2009 EXTENSIONS Based on suggestions from Robert G. Wilson v, corrected sequence, definition, comments, formula and Pari program. - Cino Hilliard, Apr 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 12:58 EDT 2022. Contains 356039 sequences. (Running on oeis4.)