login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156997 Smaller of a and b if a^2+b^2=c^2 and the sum of the distinct prime divisors of a and b is the sum of the distinct prime divisors of c. 1
3, 6, 9, 12, 18, 24, 27, 36, 48, 54, 56, 60, 72, 81, 96, 108, 112, 120, 144, 162, 180, 192, 216, 224, 240, 243, 288, 300, 319, 324, 360, 384, 392, 399, 432, 448, 480, 486, 504, 540, 576, 600, 638, 648, 720, 728, 729, 768, 784, 798, 864, 896, 900, 957, 972, 1008, 1152, 1176, 1276, 1296, 1400, 1456, 1458 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

15 divides abc. Since we define a=2mu and b=m^2-b^2, the order of the triple that generates a(n) can have the first term greater than the second term. For this reason I chose to list the smaller of a and b. The idea for this sequence comes from a post in the Yahoo group mathforfun which is in the link.

LINKS

Table of n, a(n) for n=1..63.

Cino Hilliard and others, Pythagorean Theorem and prime factors, digest of 9 messages in mathforfun Yahoo group, Feb 20 - Feb 21, 2009. [Cached copy]

MathForFun, Pythagorean triple digital sums.

FORMULA

Let a,b,c, m > u,k be positive integers. If a^2 + b^2 = c^2 then

a = k*2mu,b=k*(m^2-u^2) and c=k*(m^2+u^2).

EXAMPLE

360^2+319^2=481^2. 360=2^3*3^2*5,319=11*29 and 481=13*37. 2+3+5+11+29=13+37.

So 319 is in the sequence.

PROG

(PARI) pythsum(n) =

{

local(v, x, a, b, cm, k, u, s, ct=0);

v=vector(400);

for(m=1, n+n,

for(u=1, n,

for(k=1, n,

a=2*m*u*k;

if(u>m, b=k*(u^2-m^2), b=k*(m^2-u^2));

c=k*(m^2+u^2);

fa=ifactord(a);

fb=ifactord(b);

fc=ifactord(c);

s=0;

s2=0;

for(a1=1, length(fa), s+=fa[a1]);

for(b1=1, length(fb), s+=fb[b1]);

for(c1=1, length(fc), s2+=fc[c1]);

if(s==s2&&b>0,

\\print(m", "u", "k", "a", "b", "c", " fa" + "fb" = "fc);

ct++;

if(a<b, v[ct]=a, v[ct]=b)

)

)

)

);

y=vecsort(v);

for(x=1, 399, if(y[x]>0&&y[x]<>y[x+1], print1(y[x]", ")));

}

ifactord(n) = /* The vector of the distinct integer factors of n. */

{

local(f, j, k, flist);

flist=[];

f=Vec(factor(n));

for(j=1, length(f[1]),

flist = concat(flist, f[1][j])

);

return(flist)

}

CROSSREFS

Sequence in context: A310156 A231960 A052287 * A063996 A065119 A293396

Adjacent sequences:  A156994 A156995 A156996 * A156998 A156999 A157000

KEYWORD

nonn

AUTHOR

Cino Hilliard, Feb 20 2009

EXTENSIONS

Based on suggestions from Robert G. Wilson v, corrected sequence, definition, comments, formula and Pari program. - Cino Hilliard, Apr 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 12:58 EDT 2022. Contains 356039 sequences. (Running on oeis4.)