login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156995
Triangle T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2, read by rows.
5
2, 1, 2, 2, 4, 2, 6, 12, 9, 2, 24, 48, 40, 16, 2, 120, 240, 210, 100, 25, 2, 720, 1440, 1296, 672, 210, 36, 2, 5040, 10080, 9240, 5040, 1764, 392, 49, 2, 40320, 80640, 74880, 42240, 15840, 4032, 672, 64, 2, 362880, 725760, 680400, 393120, 154440, 42768
OFFSET
0,1
COMMENTS
For n>=1, o.g.f. of n-th row is a polynomial p(x,n) = Sum_{k=0..n} ( 2*n*(n-k)! * binomial(2*n-k, k)/(2*n-k)) * x^k. These polynomials are hit polynomials for the reduced ménage problem (Riordan 1958).
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 197-199
FORMULA
T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2.
EXAMPLE
Triangle starts with:
n=0: 2;
n=1: 1, 2;
n=2: 2, 4, 2;
n=3: 6, 12, 9, 2;
n=4: 24, 48, 40, 16, 2;
n=5: 120, 240, 210, 100, 25, 2;
n=6: 720, 1440, 1296, 672, 210, 36, 2;
n=7: 5040, 10080, 9240, 5040, 1764, 392, 49, 2;
n=8: 40320, 80640, 74880, 42240, 15840, 4032, 672, 64, 2;
...
MATHEMATICA
T[n_, k_]:= If[n==0, 2, 2*n*Binomial[2*n-k, k]*(n-k)!/(2*n-k)];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 14 2021 *)
PROG
(Magma)
A156995:= func< n, k | n eq 0 select 2 else 2*n*Factorial(n-k)*Binomial(2*n-k, k)/(2*n-k) >;
[A156995(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
(Sage)
def A156995(n, k): return 2 if (k==n) else 2*n*factorial(n-k)*binomial(2*n-k, k)/(2*n-k)
flatten([[A156995(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
CROSSREFS
Row sums are A300484.
Sequence in context: A308302 A225530 A020475 * A131183 A346063 A133770
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 20 2009
EXTENSIONS
Edited and changed T(0,0) = 2 (to make formula continuous and constant along the diagonal k = n) by Max Alekseyev, Mar 06 2018
STATUS
approved