This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030221 Chebyshev even indexed U-polynomials evaluated at sqrt(7)/2. 32
 1, 6, 29, 139, 666, 3191, 15289, 73254, 350981, 1681651, 8057274, 38604719, 184966321, 886226886, 4246168109, 20344613659, 97476900186, 467039887271, 2237722536169, 10721572793574, 51370141431701, 246129134364931, 1179275530392954, 5650248517599839 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = L(n,-5)*(-1)^n, where L is defined as in A108299; see also A004253 for L(n,+5). - Reinhard Zumkeller, Jun 01 2005 General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim n->infinity a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. [Ctibor O. Zizka, Sep 02 2008] The primes in this sequence are 29, 139, 3191, 15289, 350981, 1681651,... - Ctibor O. Zizka, Sep 02 2008 Inverse binomial transform of A030240. [Philippe Deléham, Nov 19 2009] For positive n, a(n) equals the permanent of the (2n)X(2n) matrix with sqrt(7)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). [John M. Campbell, Jul 08 2011] The aerated sequence (b(n))n>=1 = [1, 0, 6, 0, 29, 0, 139, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -3, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - Peter Bala, Mar 22 2015 REFERENCES Fink, Alex, Richard Guy, and Mark Krusemeyer. "Partitions with parts occurring at most thrice." Contributions to Discrete Mathematics 3.2 (2008), 76-114. See Section 13. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38. Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9. K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681. (see page 678) Tanya Khovanova, Recursive Sequences W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), rhs, m=6. Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019. Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174. H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume. Index entries for linear recurrences with constant coefficients, signature (5,-1). FORMULA a(n) = 5*a(n-1)-a(n-2), a(-1)=-1, a(0)=1. a(n) = U(2*n, sqrt(7)/2). G.f.: (1+x)/(x^2-5*x+1). a(n) = A004254(n) + A004254(n+1). a(n) ~ (1/2 + 1/6*sqrt(21))*(1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002 Let q(n, x)=sum(i=0, n, x^(n-i)*binomial(2*n-i, i)); then (-1)^n*q(n, -7)=a(n). - Benoit Cloitre, Nov 10 2002 A054493(2*n) = a(n)^2 for all n in Z. - Michael Somos, Jan 22 2017 a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jan 22 2017 0 = -7 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017 EXAMPLE G.f. = 1 + 6*x + 29*x^2 + 139*x^3 + 666*x^4 + 3191*x^5 + 15289*x^6 + ... MAPLE A030221 := proc(n)     option remember;     if n <= 1 then         op(n+1, [1, 6]);     else         5*procname(n-1)-procname(n-2) ;     end if; end proc: # R. J. Mathar, Apr 30 2017 MATHEMATICA t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; l[n_, x_] := Sum[t[n, k]*x^(n-k), {k, 0, n}]; a[n_] := (-1)^n*l[n, -5]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2013, after Reinhard Zumkeller *) a[ n_] := ChebyshevU[2 n, Sqrt/2]; (* Michael Somos, Jan 22 2017 *) PROG (Sage) [(lucas_number2(n, 5, 1)-lucas_number2(n-1, 5, 1))/3 for n in xrange(1, 22)] # Zerinvary Lajos, Nov 10 2009 (MAGMA) I:=[1, 6]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015 (PARI) {a(n) = simplify(polchebyshev(2*n, 2, quadgen(28)/2))}; /* Michael Somos, Jan 22 2017 */ CROSSREFS Cf. A004253, A004254, A100047, A054493. Sequence in context: A026884 A289801 A110311 * A271753 A009153 A012325 Adjacent sequences:  A030218 A030219 A030220 * A030222 A030223 A030224 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 11:26 EDT 2019. Contains 328216 sequences. (Running on oeis4.)