The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110311 Expansion of 1/((1+x+x^2)*(1+5*x+x^2)). 5
 1, -6, 29, -138, 660, -3162, 15151, -72594, 347819, -1666500, 7984680, -38256900, 183299821, -878242206, 4207911209, -20161313838, 96598657980, -462831976062, 2217561222331, -10624974135594, 50907309455639, -243911573142600, 1168650556257360, -5599341208144200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In reference to the program code, A004254(n+1) = 1ibaseiseq[A*B](n). Superseeker finds: a(n) + a(n+1) + a(n+2) = (-1)^n*A004254(n+3). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-6,-7,-6,-1). FORMULA a(n+2) = - 5*a(n+1) - a(n) + ((-1)^n)*A109265(n+1)/2. a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, May 14 2019 a(n) = (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2)), where U(n, x) = ChebyshevU(n, x). - G. C. Greubel, Jan 02 2023 MAPLE seriestolist(series(1/((x^2+5*x+1)*(x^2+x+1)), x=0, 25)); MATHEMATICA LinearRecurrence[{-6, -7, -6, -1}, {1, -6, 29, -138}, 40] (* G. C. Greubel, Jan 02 2023 *) PROG (PARI) Vec(1/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, May 14 2019 (Magma) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 02 2023 (SageMath) def U(n, x): return chebyshev_U(n, x) def A110311(n): return (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2)) [A110311(n) for n in range(41)] # G. C. Greubel, Jan 02 2023 CROSSREFS Cf. A004253, A004254, A110307, A110308, A110309, A110310. Sequence in context: A026884 A289801 A359920 * A030221 A271753 A367469 Adjacent sequences: A110308 A110309 A110310 * A110312 A110313 A110314 KEYWORD easy,sign AUTHOR Creighton Dement, Jul 19 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 09:35 EDT 2024. Contains 373515 sequences. (Running on oeis4.)