login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057081 Even indexed Chebyshev U-polynomials evaluated at sqrt(11)/2. 17
1, 10, 89, 791, 7030, 62479, 555281, 4935050, 43860169, 389806471, 3464398070, 30789776159, 273643587361, 2432002510090, 21614379003449, 192097408520951, 1707262297685110, 15173263270645039, 134852107138120241 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the m=11 member of the m-family of sequences S(n,m-2)+S(n-1,m-2) = S(2*n,sqrt(m)) (for S(n,x) see Formula). The m=4..10 instances are: A005408, A002878, A001834, A030221, A002315, A033890 and A057080, resp. The m=1..3 (signed) sequences are: A057078, A057077 and A057079, resp.

a(n) = L(n,-9)*(-1)^n, where L is defined as in A108299; see also A070998 for L(n,+9). - Reinhard Zumkeller, Jun 01 2005

General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim n->infinity a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. [Ctibor O. Zizka, Sep 02 2008]

The primes in this sequence are 89, 389806471, 192097408520951, 7477414486269626733119, ... - Ctibor O. Zizka, Sep 02 2008

The aerated sequence (b(n))n>=1 = [1, 0, 10, 0, 89, 0, 791, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -7, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

REFERENCES

Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), rhs, m=11.

H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (9,-1).

FORMULA

a(n) = 9*a(n-1)-a(n-2), a(-1)=-1, a(0)=1.

a(n) = S(n, 9)+S(n-1, 9)= S(2*n, sqrt(11)) with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 9)= A018913(n).

G.f.: (1+x)/(1-9*x+x^2).

Let q(n, x) = sum(i=0, n, x^(n-i)*binomial(2*n-i, i)), a(n) = (-1)^n*q(n, -11). - Benoit Cloitre, Nov 10 2002

MAPLE

A057081 := proc(n)

    option remember;

    if n <= 1 then

        op(n+1, [1, 10]);

    else

        9*procname(n-1)-procname(n-2) ;

    end if;

end proc: # R. J. Mathar, Apr 30 2017

MATHEMATICA

CoefficientList[Series[(1 + x)/(1 - 9*x + x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{9, -1}, {1, 10}, 50] (* G. C. Greubel, Apr 12 2017 *)

PROG

(Sage) [(lucas_number2(n, 9, 1)-lucas_number2(n-1, 9, 1))/7 for n in xrange(1, 20)] # Zerinvary Lajos, Nov 10 2009

(PARI) Vec((1+x)/(1-9*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015

CROSSREFS

Sequence in context: A000826 A282555 A120923 * A024132 A192898 A044261

Adjacent sequences:  A057078 A057079 A057080 * A057082 A057083 A057084

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang Aug 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 26 02:24 EDT 2017. Contains 288749 sequences.