login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007968 Type of happy factorization of n. 12
0, 0, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1.
FORMULA
a(A000290(n)) = 0; a(A007969(n)) = 1; a(A007970(n)) = 2.
PROG
(Haskell)
a007968 = (\(hType, _, _, _, _) -> hType) . h
h 0 = (0, 0, 0, 0, 0)
h x = if a > 0 then (0, a, a, a, a) else h' 1 divs
where a = a037213 x
divs = a027750_row x
h' r [] = h' (r + 1) divs
h' r (d:ds)
| d' > 1 && rest1 == 0 && ss == s ^ 2 = (1, d, d', r, s)
| rest2 == 0 && odd u && uu == u ^ 2 = (2, d, d', t, u)
| otherwise = h' r ds
where (ss, rest1) = divMod (d * r ^ 2 + 1) d'
(uu, rest2) = divMod (d * t ^ 2 + 2) d'
s = a000196 ss; u = a000196 uu; t = 2 * r - 1
d' = div x d
hs = map h [0..]
hCouples = map (\(_, factor1, factor2, _, _) -> (factor1, factor2)) hs
sqrtPair n = genericIndex sqrtPairs (n - 1)
sqrtPairs = map (\(_, _, _, sqrt1, sqrt2) -> (sqrt1, sqrt2)) hs
-- Reinhard Zumkeller, Oct 11 2015
CROSSREFS
Sequence in context: A339823 A127506 A353433 * A236532 A077763 A030218
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 10:37 EDT 2024. Contains 375987 sequences. (Running on oeis4.)