OFFSET
4,3
COMMENTS
Negative values of the integer Schwarzian derivatives of Primes are much larger in magnitude than positives values. The significance of this seems to be in its relationship to zeta zeros on the complex plane.
FORMULA
a(n) = Floor[Abs[IntegerSchwarzianDerivative[Prime[n]]]]
MATHEMATICA
(* Ulam-Newton integer derivatives: *) f1[n_]=Prime[n]-Prime[n-1] f2[n_]=Prime[n]-2*Prime[n-1]+Prime[n-2] f3[n_]=Prime[n]-3*Prime[n-1]+3*Prime[n-2]-Prime[n-3] (* Integer Schwarzian derivative:*) sf[n_]=f3[n]/f1[n]-1.5*(f2[n]/f1[n])^2 af=Table[sf[n], {n, 4, 204}] a=Floor[Abs[af]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 15 2004
STATUS
approved