login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094902 Average of four primes that have nonnegative integer Schwartzian derivative. 1
0, 13, 0, 24, 0, 36, 0, 0, 60, 0, 0, 84, 0, 0, 0, 120, 0, 0, 145, 0, 162, 0, 0, 0, 204, 0, 216, 0, 0, 254, 0, 278, 0, 298, 0, 0, 330, 0, 0, 362, 0, 381, 0, 0, 0, 0, 445, 456, 0, 0, 482, 0, 506, 520, 0, 540, 0, 0, 567, 0, 0, 612, 624, 0, 0, 666, 0, 693, 0, 0, 0, 739, 0, 762, 0, 0, 798, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,2

COMMENTS

Generally there seem to be more negative values than positive for the integer Schwarzian derivative of the Primes. The nearest primes to this average are the places where the prime curve has positive derivative, for example 13,23,37,61,83, etc.

LINKS

Table of n, a(n) for n=4..81.

FORMULA

a(n) = if Sf(Prime[n])>=0 then (Prime[n-3]+Prime[n-2]+Prime[n-1]+Prime[n])/2 else zero

MATHEMATICA

f1[n_]=Prime[n]-Prime[n-1] f2[n_]=Prime[n]-2*Prime[n-1]+Prime[n-2] f3[n_]=Prime[n]-3*Prime[n-1]+3*Prime[n-2]-Prime[n-3] sf[n_]=f3[n]/f1[n]-1.5*(f2[n]/f1[n])^2 a=Table[If[sf[n]>0\[Or]sf[n]==0, (Prime[n-3]+Prime[n-2]+Prime[n-1]+Prime[n])/2, 0], {n, 4, 204}]

CROSSREFS

Sequence in context: A114782 A065112 A114783 * A252056 A096069 A180265

Adjacent sequences:  A094899 A094900 A094901 * A094903 A094904 A094905

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Jun 15 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 27 19:31 EDT 2022. Contains 354898 sequences. (Running on oeis4.)