login
A252056
a(n) is the least m such that m = A001065(j) = A001065(k) where j != k, A000005(j) = A000005(k) = n; or 0 if no such m exists.
0
0, 1, 0, 13, 0, 73, 0, 106, 9064940, 4001, 0, 396, 0
OFFSET
1,4
COMMENTS
When n>2 and A001055(n)=1, then a(n)=0; because in that case, only a prime^n has n divisors, and then it is not possible to get twice the same value for sigma(x)-x. This happens for n=3, 5, 7, 11, 13, 17, 19, 23, 29, ... - Michel Marcus, Dec 16 2014
Note that for n=8, j and k do not have the same prime signature. - Michel Marcus, Dec 17 2014
EXAMPLE
For n=2, all primes have 2 divisors and satisfy sigma(x)-x=1, so a(2) = 1.
For n=4, 27 and 35 have 4 divisors and the sum of their proper divisors is 13 for both (1+3+9 and 1+5+7).
For n=6, 98 and 175 have 6 divisors and the sum of their proper divisors is 73 for both (1+2+7+14+49 and 1+5+7+25+35).
For n=8, 104 and 110 have 8 divisors and the sum of their proper divisors is 106 for both (1+2+4+8+13+26+52 and 1+2+5+10+11+22+55).
For n=9, 163^2*167^2 and 61^2*353^2 have 9 divisors and the sum of their proper divisors is 9064940 for both.
For n=10, 7203 and 7857 have 10 divisors and the sum of their proper divisors is 4001 for both.
For n=12, 276 and 306 have 12 divisors and the sum of their proper divisors is 396 for both.
CROSSREFS
Cf. A000005 (number of divisors of n), A001065 (sum of proper divisors of n).
Sequence in context: A065112 A114783 A094902 * A096069 A180265 A165400
KEYWORD
nonn,more
AUTHOR
Naohiro Nomoto, Dec 13 2014
EXTENSIONS
a(9)-a(13) from Michel Marcus, Dec 16 2014
STATUS
approved