login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123220
a(n)=the (1,1)-term of M^(n-1), where M=matrix(5,5, [3,-1,-1,-1,-1; 1,3,-1,-1,-1; 1,1,3,-1,-1; 1,1,1,3,-1; 1,1,1,1,3]).
0
1, 3, 5, -9, -99, -297, 389, 8655, 46573, 122823, -120491, -3003393, -15885315, -40246281, 50400229, 1040606127, 5296630541, 12512952615, -22872751243, -368600380833, -1789336379619, -3926384911017, 9502037022725, 129579396089871, 602116408170541, 1219711972804743
OFFSET
1,2
FORMULA
a(1) = 1; a(2) = 3; a(3) = 5; a(4) = -9; a(5) = -99; a(n) = 15a(n-1)-100a(n-2)+360a(n-3)-680a(n-4)+528a(n-5) for n>= 6. The minimal polynomial of M is x^5-15x^4+100x^3-360x^2+680x-528, the coefficients of which yield the coefficients of the recurrence relation.
O.g.f.: -x*(1-12*x+60*x^2-144*x^3+136*x^4)/((3*x-1)*(176*x^4-168*x^3+64*x^2-12*x+1)). - R. J. Mathar, Dec 05 2007
MAPLE
a[1]:=1:a[2]:=3:a[3]:=5:a[4]:=-9:a[5]:=-99: for n from 6 to 26 do a[n]:=15*a[n-1]-100*a[n-2]+360*a[n-3]-680*a[n-4]+528*a[n-5] od: seq(a[n], n=1..26); with(linalg): M[1]:=matrix(5, 5, [3, -1, -1, -1, -1, 1, 3, -1, -1, -1, 1, 1, 3, -1, -1, 1, 1, 1, 3, -1, 1, 1, 1, 1, 3]): for n from 2 to 25 do M[n]:=multiply(M[1], M[n-1]) od: 1, seq(M[n][1, 1], n=1..25);
MATHEMATICA
M = {{3, -1, -1, -1, -1}, {1, 3, -1, -1, -1}, {1, 1, 3, -1, -1}, {1, 1, 1, 3, -1}, {1, 1, 1, 1, 3}}; w[1] = {1, 0, 0, 0, 0}; w[n_] := w[n] = M.w[n - 1]; a = Table[w[n][[1]], {n, 1, 30}]
CROSSREFS
KEYWORD
sign
AUTHOR
Roger L. Bagula, Oct 05 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 15 2006
STATUS
approved