OFFSET
1,2
FORMULA
a(1) = 1; a(2) = 3; a(3) = 5; a(4) = -9; a(5) = -99; a(n) = 15a(n-1)-100a(n-2)+360a(n-3)-680a(n-4)+528a(n-5) for n>= 6. The minimal polynomial of M is x^5-15x^4+100x^3-360x^2+680x-528, the coefficients of which yield the coefficients of the recurrence relation.
O.g.f.: -x*(1-12*x+60*x^2-144*x^3+136*x^4)/((3*x-1)*(176*x^4-168*x^3+64*x^2-12*x+1)). - R. J. Mathar, Dec 05 2007
MAPLE
a[1]:=1:a[2]:=3:a[3]:=5:a[4]:=-9:a[5]:=-99: for n from 6 to 26 do a[n]:=15*a[n-1]-100*a[n-2]+360*a[n-3]-680*a[n-4]+528*a[n-5] od: seq(a[n], n=1..26); with(linalg): M[1]:=matrix(5, 5, [3, -1, -1, -1, -1, 1, 3, -1, -1, -1, 1, 1, 3, -1, -1, 1, 1, 1, 3, -1, 1, 1, 1, 1, 3]): for n from 2 to 25 do M[n]:=multiply(M[1], M[n-1]) od: 1, seq(M[n][1, 1], n=1..25);
MATHEMATICA
M = {{3, -1, -1, -1, -1}, {1, 3, -1, -1, -1}, {1, 1, 3, -1, -1}, {1, 1, 1, 3, -1}, {1, 1, 1, 1, 3}}; w[1] = {1, 0, 0, 0, 0}; w[n_] := w[n] = M.w[n - 1]; a = Table[w[n][[1]], {n, 1, 30}]
CROSSREFS
KEYWORD
sign
AUTHOR
Roger L. Bagula, Oct 05 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 15 2006
STATUS
approved