The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085340 a(n) is the value of determinant of the following special matrix: diagonal values equal to n-2; upper triangular entries equal to -1; lower triangular values are +1. 2
 -1, 1, 4, 41, 528, 8177, 148160, 3077713, 72147712, 1884629825, 54294967296, 1710428956601, 58496602689536, 2158563109641265, 85487558566199296, 3616912482448035233, 162819625954342010880, 7770488166051562690817, 391896604540625999888384 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS These invertible matrices are used in formal neural network theory to generate transient-free state transition graphs with using suitable threshold vectors. REFERENCES Labos E.: The most complicated networks of formal neurons. In Proc. of IEEE. first International Conference on Neural Networks. San Diego,USA,1987.[Editors: Caudill,M. and Butler Ch.]; Vol. III, pp. 301-308. LINKS EXAMPLE n=5: matrix = +3,-1,-1,-1,-1 +1,+3,-1,-1,-1 +1,+1,+3,-1,-1 +1,+1,+1,+3,-1 +1,+1,+1,+1,+3, with determinant=528=a(5). a(1)=-1 is the only negative term. MATHEMATICA f[x_, y_] := Sign[y-x] g[x_, y_, z_] := (z-2)*(1-Abs[f[x, y]]); a=Table[Table[f[w, s], {w, 1, q}], {s, 1, q}]; b=Table[Table[g[w, s, q], {w, 1, q}], {s, 1, q}]; m=matrix=a+b; Det[m]; Table[Det[Table[Table[f[w, s]+g[w, s, q], {w, 1, q}], {s, 1, q}]], {q, 1, 20}] CROSSREFS Sequence in context: A110041 A064327 A134277 * A230251 A001908 A270703 Adjacent sequences:  A085337 A085338 A085339 * A085341 A085342 A085343 KEYWORD sign AUTHOR Labos Elemer, Jul 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 04:23 EDT 2020. Contains 337264 sequences. (Running on oeis4.)