login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064327 Generalized Catalan numbers C(-5; n). 4
1, 1, -4, 41, -514, 7206, -108174, 1700721, -27646234, 460887086, -7836596944, 135380098426, -2369445113804, 41925242220616, -748729419265314, 13478117036893281, -244306305241572474, 4455242518055441046, -81683397232911983784, 1504758636166747742286 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..765

FORMULA

a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-5)^m/n.

a(n) = (1/6)^n*(1 + 5*Sum_{k=0..n-1} C(k)*(-5*6)^k), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).

G.f.: (1+5*x*c(-5*x)/6)/(1-x/6) = 1/(1-x*c(-5*x)) with c(x) g.f. of Catalan numbers A000108.

a(n) = hypergeometric([1-n, n], [-n], -5) for n > 0. - Peter Luschny, Nov 30 2014

MATHEMATICA

CoefficientList[Series[(11 +Sqrt[1+20*x])/(2*(6-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)

PROG

(Sage)

def a(n):

    if n==0: return 1

    return hypergeometric([1-n, n], [-n], -5).simplify()

[a(n) for n in range(24)] # Peter Luschny, Nov 30 2014

(Sage) ((11 +sqrt(1+20*x))/(2*(6-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019

(PARI) my(x='x+O('x^30)); Vec((11 +sqrt(1+20*x))/(2*(6-x))) \\ G. C. Greubel, May 03 2019

(MAGMA) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (11 +Sqrt(1+20*x))/(2*(6-x)) )); // G. C. Greubel, May 03 2019

CROSSREFS

Cf. A064334.

Sequence in context: A118450 A024383 A110041 * A134277 A085340 A230251

Adjacent sequences:  A064324 A064325 A064326 * A064328 A064329 A064330

KEYWORD

sign,easy

AUTHOR

Wolfdieter Lang, Sep 21 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 20:57 EST 2019. Contains 329106 sequences. (Running on oeis4.)