OFFSET
0,2
COMMENTS
Also the number of ascending runs of length n+1 in the permutations of [2n+1].
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
FORMULA
For n>0, a(n) = (5+6*n+4*n^2+n^3)*(2*n+1)!/(n+3)!. - Vaclav Kotesovec, Oct 15 2013
MAPLE
a:= proc(n) option remember; `if`(n<2, 1+3*n,
2*n*(2*n+1)*(n^3+4*n^2+6*n+5)*a(n-1)/((n+3)*(n^3+n^2+n+2)))
end:
seq(a(n), n=0..25);
MATHEMATICA
Flatten[{1, Table[(5+6*n+4*n^2+n^3)*(2*n+1)!/(n+3)!, {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 15 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 13 2013
STATUS
approved