login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008304
Triangle read by rows: T(n,k) (n>=1; 1<=k<=n) is the number of permutations of [n] in which the longest increasing run has length k.
27
1, 1, 1, 1, 4, 1, 1, 16, 6, 1, 1, 69, 41, 8, 1, 1, 348, 293, 67, 10, 1, 1, 2016, 2309, 602, 99, 12, 1, 1, 13357, 19975, 5811, 1024, 137, 14, 1, 1, 99376, 189524, 60875, 11304, 1602, 181, 16, 1, 1, 822040, 1960041, 690729, 133669, 19710, 2360, 231, 18, 1, 1, 7477161
OFFSET
1,5
COMMENTS
Row n has n terms.
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261, Table 7.4.1.
LINKS
Max A. Alekseyev, On the number of permutations with bounded run lengths, arXiv preprint arXiv:1205.4581 [math.CO], 2012-2013. - From N. J. A. Sloane, Oct 23 2012
FORMULA
E.g.f. of column k: 1/Sum_{n>=0} ((k+1)*n+1-x)*x^((k+1)*n)/((k+1)*n+1)! - 1/Sum_{n>=0} (k*n+1-x)*x^(k*n)/(k*n+1)!. - Alois P. Heinz, Oct 13 2013
T(n,k) = A122843(n,k) for k > n/2. - Alois P. Heinz, Oct 17 2013
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 1;
1, 16, 6, 1;
1, 69, 41, 8, 1;
1, 348, 293, 67, 10, 1;
...
T(3,2) = 4 because we have (13)2, 2(13), (23)1, 3(12), where the parentheses surround runs of length 2.
MAPLE
b:= proc(u, o, t, k) option remember; `if`(t=k, (u+o)!,
`if`(max(t, u)+o<k, 0, add(b(u+j-1, o-j, t+1, k), j=1..o)+
add(b(u-j, o+j-1, 1, k), j=1..u)))
end:
T:= (n, k)-> b(0, n, 0, k) -b(0, n, 0, k+1):
seq(seq(T(n, k), k=1..n), n=1..15); # Alois P. Heinz, Oct 16 2013
MATHEMATICA
b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u]+o < k, 0, Sum[b[u+j-1, o-j, t+1, k], {j, 1, o}] + Sum[b[u-j, o+j-1, 1, k], {j, 1, u}]]]; T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k+1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Alois P. Heinz's Maple code *)
(*additional code*)
nn=12; a[r_]:=Apply[Plus, Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i, {i, 1, r}]), {x, 0, nn}]][[n]]/(n+r)!, {n, 1, nn-r}]]/.y->-1; Map[Select[#, #>0&]&, Transpose[Prepend[Table[Drop[Range[0, nn]! CoefficientList[Series[1/(1-x-a[n+1])-1/(1-x-a[n]), {x, 0, nn}], x], 1], {n, 1, 8}], Table[1, {nn}]]]]//Grid (* Geoffrey Critzer, Feb 25 2014 *)
CROSSREFS
Row sums give A000142. Sum_{k=1..n} k*T(n,k) = A064314(n). Cf. A064315.
Sequence in context: A156599 A010320 A152571 * A203846 A118185 A176483
KEYWORD
nonn,tabl
EXTENSIONS
More terms from David W. Wilson, Sep 07 2001
Better description from Emeric Deutsch, May 08 2004
STATUS
approved