OFFSET
1,4
LINKS
Alois P. Heinz, Rows n = 1..100, flattened
D. W. Wilson, Extended tables for A008304 and A064315
EXAMPLE
Sequence (1, 3, 2, 5, 4) has ascending runs (1, 3), (2, 5), (4), the shortest is length 1. Of all permutations of (1, 2, 3, 4, 5), T(5,1) = 101 have shortest ascending run of length 1.
Triangle T(n,k) begins:
1;
1, 1;
5, 0, 1;
18, 5, 0, 1;
101, 18, 0, 0, 1;
611, 89, 19, 0, 0, 1;
4452, 519, 68, 0, 0, 0, 1,
36287, 3853, 110, 69, 0, 0, 0, 1;
...
MAPLE
A:= proc(n, k) option remember; local b; b:=
proc(u, o, t) option remember; `if`(t+o<=k, (u+o)!,
add(b(u+i-1, o-i, min(k, t)+1), i=1..o)+
`if`(t<=k, u*(u+o-1)!, add(b(u-i, o+i-1, 1), i=1..u)))
end: forget(b):
add(b(j-1, n-j, 1), j=1..n)
end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 29 2013
MATHEMATICA
A[n_, k_] := A[n, k] = Module[{b}, b[u_, o_, t_] := b[u, o, t] = If[t+o <= k, (u+o)!, Sum[b[u+i-1, o-i, Min[k, t]+1], {i, 1, o}] + If[t <= k, u*(u+o-1)!, Sum[ b[u-i, o+i-1, 1], {i, 1, u}]]]; Sum[b[j-1, n-j, 1], {j, 1, n}]]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
David W. Wilson, Sep 07 2001
STATUS
approved