This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064312 a(n) = B(n)*P(n), where B(n) are Bell numbers (A000110) and P(n) are numbers of arrangements of a set of n elements (A000522). 1
 1, 2, 10, 80, 975, 16952, 397271, 12014900, 453748140, 20859612270, 1143989113475, 73628313849840, 5486361777107965, 467931786713485382, 45238398292112762210, 4915902436799253089420, 596048018991814531136899 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)= int(x^n*sum(exp(-x/k)*Heaviside(x-k)/(k*k!), k=1..infinity), x=0..infinity). E.g.f.: A(x) = Sum_{n>=0} exp(n*x-1)/(n!*(1-n*x)). - Vladeta Jovovic, Feb 04 2008 MAPLE a:=n->sum(bell(n)*n!/j!, j=0..n):seq(a(n), n=0..16); # Zerinvary Lajos, Mar 19 2007 CROSSREFS Cf. A000110, A000522. Sequence in context: A008544 A227464 A269353 * A063902 A088351 A231919 Adjacent sequences:  A064309 A064310 A064311 * A064313 A064314 A064315 KEYWORD nonn AUTHOR Karol A. Penson, Sep 07 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 01:06 EDT 2019. Contains 321406 sequences. (Running on oeis4.)