This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064310 Generalized Catalan numbers C(-1; n). 10
 1, 1, 0, 1, -2, 6, -18, 57, -186, 622, -2120, 7338, -25724, 91144, -325878, 1174281, -4260282, 15548694, -57048048, 210295326, -778483932, 2892818244, -10786724388, 40347919626, -151355847012, 569274150156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references. Unsigned sequence with a(0) := 0 is A000957 (Fine). REFERENCES Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.- From N. J. A. Sloane, Oct 08 2012 LINKS P. Pagacz, M. Wojtylak, On the spectral properties of a class of H-selfadjoint random matrices and the underlying combinatorics, arXiv preprint arXiv:1310.2122, 2013 FORMULA a(n)= sum((n-m)*binomial(n-1+m, m)*((-1)^m)/n, m=0..n-1) = ((1/2)^n)*(1+sum(C(k)*(-2)^k, k=0..n-1)), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan). G.f.: (1+x*c(-x)/2)/(1-x/2) = 1/(1-x*c(-x)) with c(x) g.f. of Catalan numbers A000108. a(n) = Sum_{k, 0<=k<=n} (-1)^(n-k)*A106566(n, k) . - Philippe Deléham, Sep 18 2005 (-1)^n*a(n)=Sum_{k, 0<=k<=n}A039599(n,k)*(-2)^k . - Philippe Deléham, Mar 13 2007 Conjecture: 2*n*a(n) +(7*n-12)*a(n-1) +2*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Dec 02 2012 MATHEMATICA a[n_] := (1/2)^n*(1 + Sum[ CatalanNumber[k]*(-2)^k, {k, 0, n-1}]); Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 17 2013 *) CROSSREFS Sequence in context: A125306 A209797 * A126983 A104629 A000957 A125305 Adjacent sequences:  A064307 A064308 A064309 * A064311 A064312 A064313 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Sep 21 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 22:42 EST 2018. Contains 318087 sequences. (Running on oeis4.)