login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064310
Generalized Catalan numbers C(-1; n).
13
1, 1, 0, 1, -2, 6, -18, 57, -186, 622, -2120, 7338, -25724, 91144, -325878, 1174281, -4260282, 15548694, -57048048, 210295326, -778483932, 2892818244, -10786724388, 40347919626, -151355847012, 569274150156
OFFSET
0,5
COMMENTS
See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references.
Unsigned sequence with a(0) := 0 is A000957 (Fine).
FORMULA
a(n) = Sum_{m=0..n-1} (-1)^m*(n-m)*binomial(n-1+m, m)/n.
a(n) = ((1/2)^n)*(1 + Sum_{k=0..n-1} C(k)*(-2)^k ), n >= 1, a(0)= 1, with C(n)=A000108(n) (Catalan).
G.f.: (1+x*c(-x)/2)/(1-x/2) = 1/(1-x*c(-x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{k=0..n} (-1)^(n-k)*A106566(n, k). - Philippe Deléham, Sep 18 2005
(-1)^n*a(n) = Sum_{k=0..n} A039599(n,k)*(-2)^k. - Philippe Deléham, Mar 13 2007
Conjecture: 2*n*a(n) + (7*n-12)*a(n-1) + 2*(-2*n+3)*a(n-2) = 0. - R. J. Mathar, Dec 02 2012
MATHEMATICA
a[n_]:= (1/2)^n*(1 + Sum[ CatalanNumber[k]*(-2)^k, {k, 0, n-1}]); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 17 2013 *)
PROG
(PARI) {a(n) = (1 + sum(k=0, n-1, (-2)^k*binomial(2*k, k)/(k+1)))/2^n};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 27 2019
(Magma) [1] cat [(1 +(&+[(-2)^k*Binomial(2*k, k)/(k+1): k in [0..n-1]]))/2^n: n in [1..30]]; // G. C. Greubel, Feb 27 2019
(Sage) [1] + [(1 +sum((-2)^k*catalan_number(k) for k in (0..n-1)))/2^n for n in (1..30)] # G. C. Greubel, Feb 27 2019
(Python)
from itertools import count, islice
def A064310_gen(): # generator of terms
yield from (1, 1, 0)
a, c = 0, 1
for n in count(1):
yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)*(1 if n&1 else -1)
A064310_list = list(islice(A064310_gen(), 20)) # Chai Wah Wu, Apr 27 2023
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 21 2001
STATUS
approved