login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352076 G.f.: 1/(1 + (x + x)/(1 + (x + x^2)/(1 + (x + x^3)/(1 + (x + x^4)/(1 ...))))), a continued fraction. 2
1, -2, 6, -18, 56, -182, 610, -2090, 7284, -25732, 91908, -331280, 1203310, -4399628, 16178058, -59785914, 221911382, -826909320, 3092124820, -11599173948, 43635478422, -164582777762, 622249871474, -2357745224092, 8951720048442, -34050862000300 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A continued fraction identity from page 46 of Ramanujan's lost notebook gives:

if k = a*b, a = (sqrt(1 + 4*k) + 1)/2, and b = (sqrt(1 + 4*k) - 1)/2, then

1/(1 + (k + q)/(1 + (k + q^2)/(1 + (k + q^3)/(1 + ...)))) = 1/(a + q/(a+b*q + q^2/(a+b*q^2 + q^3/(a+b*q^3 + ...)))).

Here we set k = x and q = x, with a = 1 - C(-x) and b = -C(-x), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: 1/(1 + (x + x)/(1 + (x + x^2)/(1 + (x + x^3)/(1 + ...))))), a continued fraction.

G.f.: 1/(a + x/(a+b*x + x^2/(a+b*x^2 + x^3/(a+b*x^3 + ...))))), a continued fraction where a = (sqrt(1 + 4*x) + 1)/2 and b = (sqrt(1 + 4*x) - 1)/2.

a(n) ~ (-1)^n * c * 4^n/n^(3/2), where c = 5.404096784701640214096763058949993... - Vaclav Kotesovec, Mar 03 2022

EXAMPLE

G.f.: A(x) = 1 - 2*x + 6*x^2 - 18*x^3 + 56*x^4 - 182*x^5 + 610*x^6 - 2090*x^7 + 7284*x^8 - 25732*x^9 + 91908*x^10 + ...

where the g.f. equals the continued fraction

A(x) = 1/(1 + (x + x)/(1 + (x + x^2)/(1 + (x + x^3)/(1 + (x + x^4)/(1 + (x + x^5)/(1 + (x + x^6)/(1 ...)))))),

and also equals the continued fraction given by

A(x) = 1/(a + x/(a+b*x + x^2/(a+b*x^2 + x^3/(a+b*x^3 + x^4/(a+b*x^4 + x^5/(a+b*x^5 + x^6/(a+b*x^6 + ...)))))),

where a = x/b = 1 + b, and b = (sqrt(1 + 4*x) - 1)/2, which begins

b = x - x^2 + 2*x^3 - 5*x^4 + 14*x^5 - 42*x^6 + 132*x^7 - 429*x^8 + 1430*x^9 + ... + (-1)^n*A000108(n)*x^(n+1) + ...

PROG

(PARI) {a(n) = my(R=1); for(k=0, n-1,

R = 1/(1 + (x + x^(n-k))*R +x*O(x^n))); polcoeff(R, n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n) = my(R=1, C = (sqrt(1 + 4*x +x^2*O(x^n)) - 1)/2);

for(k=0, n-2, R = 1/(1+C + C*x^(n-k-1) + x^(n-k)*R +x^2*O(x^n))); R = 1/(1+C + x*R); polcoeff(R, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A352234, A003823, A000108.

Sequence in context: A190861 A071721 A125306 * A209797 A064310 A126983

Adjacent sequences:  A352073 A352074 A352075 * A352077 A352078 A352079

KEYWORD

sign

AUTHOR

Paul D. Hanna, Mar 02 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 22:48 EDT 2022. Contains 357092 sequences. (Running on oeis4.)