login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190861
G.f. satisfies A(x) = Product_{n>=1} (1 + x^n*A(x))/(1-x^n).
2
1, 2, 6, 18, 56, 178, 580, 1922, 6466, 22022, 75788, 263152, 920768, 3243414, 11492460, 40934616, 146484296, 526389182, 1898722242, 6872300848, 24951521464, 90851221740, 331666951116, 1213729811070, 4451547793956
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*Product_{k=1..n} (1 + x^(k-1)*A(x))/(1-x^k) due to the q-binomial theorem.
a(n) ~ c * d^n / n^(3/2), where d = 3.881937422067584825536867239508405299121... and c = 4.5308041082663146457769... - Vaclav Kotesovec, Oct 04 2023
Radius of convergence r = 0.25760332825442180041464062514057254352... and A(r) = 5.79064730997128469298918813333150154669... satisfy A(r) = 1 / Sum_{n>=1} r^n/(1 + r^n*A(r)) and A(r) = Product_{n>=1} (1 + r^n*A(r))/(1-r^n). Note that r = 1/d and A(r) = s as given in the Mathematica program by Vaclav Kotesovec. - Paul D. Hanna, Mar 04 2024
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 18*x^3 + 56*x^4 + 178*x^5 + 580*x^6 + ...
such that the g.f. satisfies the identity:
A(x) = (1+x*A(x))/(1-x) * (1+x^2*A(x))/(1-x^2) * (1+x^3*A(x))/(1-x^3) * ...
A(x) = 1 + x*(1+A(x))/(1-x) + x^2*(1+A(x))*(1+x*A(x))/((1-x)*(1-x^2)) + x^3*(1+A(x))*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)*(1-x^3)) + ...
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = Product[(1 + x^k*A[x])/(1-x^k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constants {d, c}: *) {1/r, Sqrt[-(s*(1 + s)* Log[r]*(s*(1 + s)*QPochhammer[r]^2*(Log[1 - r] + QPolyGamma[0, 1, r]) - r*Log[r]*QPochhammer[-s, r] * Derivative[0, 1][QPochhammer][r, r] + r*Log[r]*QPochhammer[r] * Derivative[0, 1][QPochhammer][-s, r]))/(2*Pi * QPochhammer[r]^2 * (s*Log[r]^2 + (1 + s)^2 * QPolyGamma[1, Log[-s]/Log[r], r]))]} /. FindRoot[{s*(1 + s)*QPochhammer[r] == QPochhammer[-s, r], Log[1 - r] + (1 + 2*s)*Log[r]/(1 + s) + QPolyGamma[0, Log[-s]/Log[r], r] == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = prod(m=1, n, (1 + x^m*A)/(1 - x^m +x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = 1 + sum(m=1, n, x^m*prod(k=1, m, (1 + x^(k-1)*A)/(1 - x^k +x*O(x^n))))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A091142 A275857 A111961 * A071721 A125306 A352076
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 21 2011
STATUS
approved