login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190864
Expansion of 1/(1-x*sqrt(1+4*x^2)).
1
1, 1, 1, 3, 5, 5, 9, 21, 29, 31, 65, 143, 181, 183, 441, 1019, 1165, 893, 2929, 7829, 7589, 1677, 19305, 66585, 49661, -44279, 126881, 638085, 325525, -1024831, 833049, 6876389, 2135149, -16612625, 5467345, 81608271, 14007941, -244131809, 35877321
OFFSET
0,4
LINKS
FORMULA
a(n)=sum(k=1..n, binomial(k/2,(n-k)/2)*2^(n-k-1)*((-1)^(n-k)+1)), n>0, a(0)=1.
D-finite with recurrence: (-n+1)*a(n) +(-n+2)*a(n-1) +3*(-n+5)*a(n-2) +3*(-n+6)*a(n-3) +4*(2*n-5)*a(n-4) +4*(2*n-7)*a(n-5) +16*(n-4)*a(n-6) +16*(n-5)*a(n-7)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[1/(1-x Sqrt[1+4x^2]), {x, 0, 40}], x] (* Harvey P. Dale, Mar 04 2015 *)
PROG
(PARI) x='x+O('x^66); /* that many terms */
Vec(1/(1-x*sqrt(1+4*x^2))) /* show terms */ /* Joerg Arndt, May 22 2011 */
(Maxima) a(n):=sum(binomial(k/2, (n-k)/2)*2^(n-k-1)*((-1)^(n-k)+1), k, 1, n);
CROSSREFS
Sequence in context: A120841 A145282 A049757 * A155537 A164663 A098971
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, May 21 2011
STATUS
approved