login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209797
The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^2 and 1^22^1 in the pattern sense.
0
2, 6, 18, 56, 188, 695, 2838, 12726, 62140, 327760, 1854488, 11189273, 71627546, 484332314, 3446042310, 25712613664, 200599911596, 1632055365951, 13814906940846, 121414108567114, 1105838412755384, 10420517690466168, 101439025287805552, 1018689421191417393
OFFSET
1,1
COMMENTS
A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}<q_{i_b} whenever p_a<p_b, these words are called order isomorphic. A colored partition q contains the colored partition p in the pattern sense if there is a copy of the uncolored partition p in the uncolored partition q, and the colors on this copy of p are order isomorphic to the colors on p, otherwise we say q avoids p in the pattern sense.
FORMULA
For n >=2, 2*B(n)+B(n-1)+sum(sum(B(n-j-k), k = 0 .. n-j), j = 2 .. n)+sum(B(j-1)*(B(n-j)+sum((k+binomial(n-j, k))*B(n-j-k), k = 1 .. n-j)), j = 2 .. n-1)
EXAMPLE
For n=2 the a(2)=6 solutions are 1^11^1, 1^21^1, 1^21^2, 1^12^1, 1^12^2, 1^22^2.
CROSSREFS
Sequence in context: A125306 A352076 A378426 * A064310 A126983 A104629
KEYWORD
nonn
AUTHOR
Adam Goyt, Mar 13 2012
STATUS
approved