login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209798
The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^2, 1^12^2, and 1^22^1 in the pattern sense.
0
2, 5, 12, 33, 108, 411, 1760, 8287, 42302, 231959, 1357150, 8427205, 55288886, 381798657, 2765917104, 20960284309, 165729739624, 1364153612335, 11665484410132, 103448316470763, 949739632313522, 9013431476894667, 88304011710168714, 891917738589610601
OFFSET
1,1
COMMENTS
A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}<q_{i_b} whenever p_a<p_b, these words are called order isomorphic. A colored partition q contains the colored partition p in the pattern sense if there is a copy of the uncolored partition p in the uncolored partition q, and the colors on this copy of p are order isomorphic to the colors on p, otherwise we say q avoids p in the pattern sense.
LINKS
Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786, 2012. - From N. J. A. Sloane, Sep 17 2012
FORMULA
2*B(n)+n-1, where B(n) is the n-th Bell number.
EXAMPLE
For n=2 the a(2)=5 solutions are 1^11^1, 1^21^1, 1^21^2, 1^12^1, 1^22^2.
CROSSREFS
Sequence in context: A209051 A209216 A076864 * A196545 A032292 A151408
KEYWORD
nonn
AUTHOR
Adam Goyt, Mar 13 2012
STATUS
approved