login
A209799
Composite numbers n such that the concatenation of the digits of the prime divisors of n is a prime number.
3
4, 6, 8, 9, 12, 16, 18, 21, 22, 24, 25, 27, 32, 33, 36, 39, 44, 46, 48, 49, 51, 54, 58, 63, 64, 66, 70, 72, 81, 82, 88, 92, 93, 96, 99, 108, 111, 115, 116, 117, 121, 125, 128, 132, 133, 140, 141, 142, 144, 147, 153, 154, 159, 162, 164, 165, 166, 169, 176, 177
OFFSET
1,1
EXAMPLE
70 is in the sequence because the prime divisors of 70 are {2,5,7} and 257 is prime.
MAPLE
read("transforms") ;
isA209799 := proc(n)
local pdivs ;
if isprime(n) or n < 4 then
return false;
end if;
pdivs := sort(convert(numtheory[factorset](n), list)) ;
isprime(digcatL(pdivs)) ;
end proc:
for n from 4 to 200 do
if isA209799(n) then printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Mar 19 2012
MATHEMATICA
Select[Range[200], CompositeQ[#]&&PrimeQ[FromDigits[Flatten[ IntegerDigits/@ FactorInteger[#] [[;; , 1]]]]]&] (* Harvey P. Dale, Apr 10 2023 *)
CROSSREFS
KEYWORD
nonn,base,less
AUTHOR
Michel Lagneau, Mar 13 2012
STATUS
approved