OFFSET
1,2
COMMENTS
Conjecture: fixed point always exists.
Some initial values capriciously provide very large prime fixed-points. This behavior is illustrated in A084319 for initial value n=91.
Unlike the related home primes A037274, the trajectory of numbers in this procedure is not strictly increasing. Of the 8770 numbers < 10000 that have trajectories (that is, that are neither 1 nor prime) 3727 decrease at least once before reaching 30 digits. A sequence with no decreases is twice as likely to not terminate before 30 digits (10.0%) as one that has at least one decrease (4.8%). - Christian N. K. Anderson, May 04 2013
LINKS
Christian N. K. Anderson, Table of n, steps to reach a(n), and a(n) for numbers where a(n) has fewer than 30 digits; NA otherwise. Also includes trajectories, factors separated by |s.
EXAMPLE
a(0)=0 since no prime factors to concatenate;
a[p^j]=p for p prime(powers);
n=95=519: fixed-point list is {95,519,3173,19167,36389},
so a(95)=36389, a prime.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] lf[x_] := Length[FactorInteger[x]] nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] conc[x_] := Fold[nd, 0, Flatten[IntegerDigits[ba[x]], 1]] Table[FixedPoint[conc, w], {w, 1, 90}] Table[conc[w], {w, 1, 128}]
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Jun 16 2003
STATUS
approved