login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084316
a(n) is the smallest number x such that gcd(prime(x)+1,x+1) = n.
8
1, 3, 20, 11, 24, 5, 6, 39, 98, 29, 120, 23, 64, 13, 104, 15, 1716, 323, 284, 499, 62, 1099, 1264, 215, 1274, 51, 512, 447, 1768, 209, 1332, 31, 32, 373, 34, 1475, 258, 835, 2300, 519, 5780, 419, 5374, 1275, 6974, 1655, 6626, 479, 10240, 10549, 3008, 883, 13938
OFFSET
1,2
COMMENTS
a(n) == n+1 (mod 2). - Robert Israel, May 04 2017
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..4000 (first 2880 terms from Robert Israel)
FORMULA
a(n) = Min{x; A066752(x)=n}.
EXAMPLE
In A066752, n=5 arises first at the 24th position, so a(5)=24.
MAPLE
f:= proc(n) local x;
for x from n-1 by ilcm(n, 2) do
if igcd(x+1, ithprime(x)+1) = n then return x fi
od
end proc:
f(1):= 1:
map(f, [$1..100]); # Robert Israel, May 04 2017
MATHEMATICA
f[x_]:=GCD[Prime[x]+1, x+1]; t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]] == 0, t[[s]] = n], {n, 1, 100000}]; t (* edited by Harvey P. Dale, Jan 28 2023 *)
Module[{nn=20000, t}, t=Table[{x, GCD[Prime[x]+1, x+1]}, {x, nn}]; Table[SelectFirst[t, #[[2]]==n&], {n, 60}]][[All, 1]] (* Harvey P. Dale, Jan 28 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 13 2003
STATUS
approved