login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223480
T(n,k)=Rolling icosahedron face footprints: number of nXk 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge
10
1, 3, 20, 9, 27, 400, 27, 135, 243, 8000, 81, 675, 2025, 2187, 160000, 243, 3375, 16875, 30375, 19683, 3200000, 729, 16875, 147825, 421875, 455625, 177147, 64000000, 2187, 84375, 1296675, 6526575, 10546875, 6834375, 1594323, 1280000000, 6561, 421875
OFFSET
1,2
COMMENTS
Table starts
..........1........3..........9...........27.............81..............243
.........20.......27........135..........675...........3375............16875
........400......243.......2025........16875.........147825..........1296675
.......8000.....2187......30375.......421875........6526575........101331675
.....160000....19683.....455625.....10546875......288507825.......7939566675
....3200000...177147....6834375....263671875....12755926575.....622332801675
...64000000..1594323..102515625...6591796875...563999907825...48783753036675
.1280000000.14348907.1537734375.164794921875.24937217326575.3824122400271675
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 20*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 15*a(n-1)
k=4: a(n) = 25*a(n-1)
k=5: a(n) = 51*a(n-1) -300*a(n-2)
k=6: a(n) = 101*a(n-1) -1900*a(n-2) +10000*a(n-3)
k=7: a(n) = 227*a(n-1) -14764*a(n-2) +411840*a(n-3) -5347200*a(n-4) +29600000*a(n-5) -48000000*a(n-6)
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 5*a(n-1) for n>2
n=3: a(n) = 9*a(n-1) -2*a(n-2) for n>4
n=4: a(n) = 17*a(n-1) -16*a(n-2) -76*a(n-3) +64*a(n-4) for n>7
n=5: a(n) = 33*a(n-1) -86*a(n-2) -1564*a(n-3) +7040*a(n-4) -6480*a(n-5) -5088*a(n-6) +5824*a(n-7) -512*a(n-8) for n>13
n=6: [order 20] for n>25
EXAMPLE
Some solutions for n=3 k=4
..0..1..6.10....0..1..4..1....0..1..0..1....0..2..8.13....0..2..8..9
..6..1..6..1....6..1..4..3....4..1..0..5....0..2..8..2....8..9..8..9
..4..1..4..3....4.17..4.17....0..5..9..5....8..2..3..4....8..2..8..9
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
CROSSREFS
Column 1 is A009964(n-1)
Column 2 is A013708(n-1)
Column 3 is 9*15^(n-1)
Column 4 is 27*25^(n-1)
Row 1 is A000244(n-1)
Row 2 is 27*5^(n-2) for n>1
Sequence in context: A067607 A013332 A223282 * A063871 A084316 A126810
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 20 2013
STATUS
approved