Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Mar 20 2013 11:54:25
%S 1,3,20,9,27,400,27,135,243,8000,81,675,2025,2187,160000,243,3375,
%T 16875,30375,19683,3200000,729,16875,147825,421875,455625,177147,
%U 64000000,2187,84375,1296675,6526575,10546875,6834375,1594323,1280000000,6561,421875
%N T(n,k)=Rolling icosahedron face footprints: number of nXk 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge
%C Table starts
%C ..........1........3..........9...........27.............81..............243
%C .........20.......27........135..........675...........3375............16875
%C ........400......243.......2025........16875.........147825..........1296675
%C .......8000.....2187......30375.......421875........6526575........101331675
%C .....160000....19683.....455625.....10546875......288507825.......7939566675
%C ....3200000...177147....6834375....263671875....12755926575.....622332801675
%C ...64000000..1594323..102515625...6591796875...563999907825...48783753036675
%C .1280000000.14348907.1537734375.164794921875.24937217326575.3824122400271675
%H R. H. Hardin, <a href="/A223480/b223480.txt">Table of n, a(n) for n = 1..160</a>
%F Empirical for column k:
%F k=1: a(n) = 20*a(n-1)
%F k=2: a(n) = 9*a(n-1)
%F k=3: a(n) = 15*a(n-1)
%F k=4: a(n) = 25*a(n-1)
%F k=5: a(n) = 51*a(n-1) -300*a(n-2)
%F k=6: a(n) = 101*a(n-1) -1900*a(n-2) +10000*a(n-3)
%F k=7: a(n) = 227*a(n-1) -14764*a(n-2) +411840*a(n-3) -5347200*a(n-4) +29600000*a(n-5) -48000000*a(n-6)
%F Empirical for row n:
%F n=1: a(n) = 3*a(n-1)
%F n=2: a(n) = 5*a(n-1) for n>2
%F n=3: a(n) = 9*a(n-1) -2*a(n-2) for n>4
%F n=4: a(n) = 17*a(n-1) -16*a(n-2) -76*a(n-3) +64*a(n-4) for n>7
%F n=5: a(n) = 33*a(n-1) -86*a(n-2) -1564*a(n-3) +7040*a(n-4) -6480*a(n-5) -5088*a(n-6) +5824*a(n-7) -512*a(n-8) for n>13
%F n=6: [order 20] for n>25
%e Some solutions for n=3 k=4
%e ..0..1..6.10....0..1..4..1....0..1..0..1....0..2..8.13....0..2..8..9
%e ..6..1..6..1....6..1..4..3....4..1..0..5....0..2..8..2....8..9..8..9
%e ..4..1..4..3....4.17..4.17....0..5..9..5....8..2..3..4....8..2..8..9
%e Face neighbors:
%e 0 -> 1 2 5
%e 1 -> 0 4 6
%e 2 -> 0 3 8
%e 3 -> 2 4 16
%e 4 -> 3 1 17
%e 5 -> 0 7 9
%e 6 -> 1 7 10
%e 7 -> 6 5 11
%e 8 -> 2 9 13
%e 9 -> 8 5 14
%e 10 -> 6 12 17
%e 11 -> 7 12 14
%e 12 -> 11 10 19
%e 13 -> 8 15 16
%e 14 -> 9 11 15
%e 15 -> 14 13 19
%e 16 -> 3 13 18
%e 17 -> 4 10 18
%e 18 -> 16 17 19
%e 19 -> 15 18 12
%Y Column 1 is A009964(n-1)
%Y Column 2 is A013708(n-1)
%Y Column 3 is 9*15^(n-1)
%Y Column 4 is 27*25^(n-1)
%Y Row 1 is A000244(n-1)
%Y Row 2 is 27*5^(n-2) for n>1
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Mar 20 2013