login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344030
Composite numbers with distinct prime factors {p1, p2, ..., pk} in ascending order where p1^1 + p2^2 + ...+ pk^k is prime.
2
4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 48, 49, 54, 64, 72, 81, 96, 108, 121, 125, 128, 144, 162, 169, 192, 216, 243, 256, 288, 289, 324, 343, 361, 384, 390, 399, 432, 455, 465, 486, 512, 529, 570, 576, 595, 625, 627, 648, 690, 729, 768, 780, 841, 864, 903
OFFSET
1,1
LINKS
EXAMPLE
24 has distinct prime factors {2, 3} and 2^1 + 3^2 = 11 is prime.
570 has distinct prime factors {2, 3, 5, 19} and 2^1 + 3^2 + 5^3 + 19^4 = 130457 is prime.
MAPLE
filter:= proc(n) local F, i;
if isprime(n) then return false fi;
F:= sort(convert(numtheory:-factorset(n), list));
isprime(add(F[i]^i, i=1..nops(F)))
end proc:
select(filter, [$4..1000]); # Robert Israel, Apr 09 2024
MATHEMATICA
Select[Range@1000, !PrimeQ@#&&PrimeQ@Total[(a=First/@FactorInteger[#])^Range@Length[a]]&]
PROG
(PARI) isok(c) = if (!isprime(c), my(f=factor(c)); isprime(sum(k=1, #f~, f[k, 1]^k))); \\ Michel Marcus, May 07 2021
CROSSREFS
Sequence in context: A209799 A028958 A200878 * A350706 A036310 A046760
KEYWORD
nonn
AUTHOR
STATUS
approved