login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352234
G.f.: 1/(1 + (x+x^2 + x)/(1 + (x+x^2 + x^2)/(1 + (x+x^2 + x^3)/(1 + (x+x^2 + x^4)/(1 + ...))))), a continued fraction.
2
1, -2, 5, -11, 21, -36, 55, -68, 40, 123, -642, 1988, -5080, 11550, -23958, 45537, -78318, 116893, -131896, 31485, 420341, -1762617, 5118598, -12634557, 28027721, -56909794, 105789635, -176867658, 251914939, -251059044, -61012507, 1269898505, -4682586517
OFFSET
0,2
COMMENTS
A continued fraction identity from page 46 of Ramanujan's lost notebook gives:
if k = a*b, a = (sqrt(1 + 4*k) + 1)/2, and b = (sqrt(1 + 4*k) - 1)/2, then
1/(1 + (k + q)/(1 + (k + q^2)/(1 + (k + q^3)/(1 + ...)))) = 1/(a + q/(a+b*q + q^2/(a+b*q^2 + q^3/(a+b*q^3 + ...)))).
Here we set k = x+x^2 and q = x, with a = 1+x and b = x.
LINKS
FORMULA
G.f.: 1/(1 + (x+x^2 + x)/(1 + (x+x^2 + x^2)/(1 + (x+x^2 + x^3)/(1 + (x+x^2 + x^4)/(1 + (x+x^2 + x^5)/(1 + ...)))))), a continued fraction.
G.f.: 1/(1+x + x/(1+x + x^2 + x^2/(1+x + x^3 + x^3/(1+x + x^4 + x^4/(1+x + x^5 + x^5/(1+x + x^6 + ...)))))), a continued fraction.
EXAMPLE
G.f.: A(x) = 1 - 2*x + 5*x^2 - 11*x^3 + 21*x^4 - 36*x^5 + 55*x^6 - 68*x^7 + 40*x^8 + 123*x^9 - 642*x^10 + 1988*x^11 - 5080*x^12 + ...
PROG
(PARI) {a(n) = my(R=1); for(k=0, n-1,
R = 1/(1 + (x+x^2 + x^(n-k))*R +x*O(x^n))); polcoeff(R, n)}
for(n=0, 32, print1(a(n), ", "))
(PARI) {a(n) = my(R=1 +x^2*O(x^n));
for(k=0, n-2, R = 1/(1+x + x^(n-k) + x^(n-k)*R +x^2*O(x^n))); R = 1/(1+x + x*R); polcoeff(R, n)}
for(n=0, 32, print1(a(n), ", "))
CROSSREFS
Cf. A352076.
Sequence in context: A005575 A328670 A294745 * A332063 A050407 A113032
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 08 2022
STATUS
approved