login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352232
a(n) is the smallest positive integer k such that 1 + k * prime(n) is a power of two.
1
1, 3, 1, 93, 315, 15, 13797, 89, 9256395, 1, 1857283155, 25575, 381, 178481, 84973577874915, 4885260612740877, 18900352534538475, 1101298153654301589, 483939977, 7, 6958934353, 58261485282632731311141, 23, 2901803883615, 12550996041863657440561417875
OFFSET
2,2
COMMENTS
All terms are odd.
LINKS
FORMULA
a(n) = (2^A014664(n)-1)/prime(n).
A007814(a(n)*prime(n)+1) = A014664(n).
a(n) = 1 <=> n in { A059305 } <=> prime(n) in { A000668 }.
a(n)*prime(n) + 1 in { A000079 }.
a(n)*prime(n) in { A000225 }.
MAPLE
a:= n-> (p-> (2^numtheory[order](2, p)-1)/p)(ithprime(n)):
seq(a(n), n=2..28);
PROG
(Python)
from sympy.ntheory import n_order, prime
def A352232(n): return (2**n_order(2, p:=prime(n))-1)//p # Chai Wah Wu, Mar 09 2022
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 08 2022
STATUS
approved