The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221195 Simple continued fraction expansion of an infinite product. 2
 1, 3, 1, 96, 1, 483, 1, 9600, 1, 47523, 1, 940896, 1, 4656963, 1, 92198400, 1, 456335043, 1, 9034502496, 1, 44716177443, 1, 885289046400, 1, 4381729054563, 1, 86749292044896, 1, 429364731169923, 1, 8500545331353600, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Simple continued fraction expansion of product {k >= 0} (1 - 2*(N - sqrt(N^2-1))^(4*k+3))/(1 - 2*(N - sqrt(N^2-1))^(4*k+1)) at N = 5. For other cases see A221075 (N = 2), A221193 (N = 3) and A221194 (N = 5). Denoting the present sequence by [1, c(1), 1, c(2), 1, c(3), 1, ...] then for n >= 0 the sequence [1, c(2*n+1), 1, c(2*(2*n+1)), 1, c(3*(2*n+1)), 1, ...] gives the simple continued fraction expansion of product {k >= 0} (1 - 2*((5 - sqrt(24))^(2*n+1))^(4*k+3))/(1 - 2*((5 - sqrt(24))^(2*n+1))^(4*k+1)). LINKS Index entries for linear recurrences with constant coefficients, signature (0,1,0,98,0,-98,0,-1,0,1). FORMULA a(4*n-1) = (5 + sqrt(24))^(2*n) + (5 - sqrt(24))^(2*n) - 2; a(4*n+1) = 1/2*((5 + sqrt(24))^(2*n+1) + (5 - sqrt(24))^(2*n+1)) - 2; a(2*n) = 1. G.f.: -(x^8+3*x^7+93*x^5-98*x^4+93*x^3+3*x+1) / ((x-1)*(x+1)*(x^4-10*x^2+1)*(x^4+10*x^2+1)). [Colin Barker, Jan 14 2013] EXAMPLE Product {k >= 0} (1 - 2*(5 - sqrt(24))^(4*k+3))/(1 - 2*(5 - sqrt(24))^(4*k+1)) = 1.25063 93996 76216 17350 ... = 1 + 1/(3 + 1/(1 + 1/(96 + 1/(1 + 1/(483 + ...))))). CROSSREFS A221075 (N = 2), A221193 (N = 3), A221194 (N = 4). Sequence in context: A012854 A331778 A241191 * A071291 A049330 A274040 Adjacent sequences:  A221192 A221193 A221194 * A221196 A221197 A221198 KEYWORD nonn,easy,cofr AUTHOR Peter Bala, Jan 08 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 15:34 EDT 2021. Contains 348091 sequences. (Running on oeis4.)