The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274040 Numerator of the rational coefficient at the first power of Pi in Sum_{k>0} (sin(k)/k)^n. 1
 1, 1, 3, 1, 115, 11, 43141, 733, -722109, -1093, 143795597, 47489, 14249936103, 5276161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS EXAMPLE a(1) = 1, because Sum_{k>0} (sin(k)/k)^1 = (1/2)*Pi - 1/2. a(2) = 1, because Sum_{k>0} (sin(k)/k)^2 = (1/2)*Pi - 1/2. a(3) = 3, because Sum_{k>0} (sin(k)/k)^3 = (3/8)*Pi - 1/2. a(4) = 1, because Sum_{k>0} (sin(k)/k)^4 = (1/3)*Pi - 1/2. This simple pattern breaks starting at n = 7: a(7) = 43141, because Sum_{k>0} (sin(k)/k)^7 = (1/720)*Pi^7 - (7/240)*Pi^6 + (49/192)*Pi^5 - (343/288)*Pi^4 + (2401/768)*Pi^3 - (16807/3840)*Pi^2 + (43141/15360)*Pi - 1/2. MATHEMATICA a[n_] := Numerator@Coefficient[Sum[Sinc[k]^n, {k, 1, Infinity}], Pi] CROSSREFS Cf. A274041 (denominators). Sequence in context: A221195 A071291 A049330 * A266363 A068542 A036112 Adjacent sequences:  A274037 A274038 A274039 * A274041 A274042 A274043 KEYWORD sign,more,hard,frac AUTHOR Vladimir Reshetnikov, Jun 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 28 12:59 EDT 2022. Contains 354907 sequences. (Running on oeis4.)