login
A230349
Number of permutations of [2n+9] in which the longest increasing run has length n+9.
3
1, 20, 417, 9690, 253776, 7465176, 244906200, 8891411760, 354610872000, 15432114297600, 728406536457600, 37090538241120000, 2027740775284224000, 118512161081233920000, 7376476698319125196800, 487273386402209523916800, 34055074238462266429440000
OFFSET
0,2
COMMENTS
Also the number of ascending runs of length n+9 in the permutations of [2n+9].
LINKS
FORMULA
a(n) = (n^3+20*n^2+110*n+109)*(2*n+9)!/(n+11)! for n>0, a(0) = 1.
a(n) = A008304(2*n+9,n+9) = A122843(2*n+9,n+9).
MAPLE
a:= proc(n) option remember; `if`(n<2, 1+19*n, 2*(2*n+9)*(n+4)*
(n^3+20*n^2+110*n+109)*a(n-1)/((n+11)*(n^3+17*n^2+73*n+18)))
end:
seq(a(n), n=0..25);
CROSSREFS
A diagonal of A008304, A122843.
Sequence in context: A196898 A355966 A068772 * A158601 A268738 A358108
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 16 2013
STATUS
approved