login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068772
Generalized Catalan numbers.
8
1, 1, 20, 410, 8600, 184200, 4020000, 89205000, 2008700000, 45816140000, 1056825200000, 24618524200000, 578457724000000, 13695679012000000, 326448619920000000, 7827776361090000000, 188701194087000000000
OFFSET
0,3
COMMENTS
This is the tenth member in the a-family of sequences K(a,a; n), a=1,2,3,...,n>=0, defined in a comment to the array A068763.
FORMULA
a(n) = (10^n) * p(n, -9/10) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 10*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-40*x*(1-9*x)))/(20*x).
Recurrence: (n+1)*a(n) = 360*(2-n)*a(n-2) + 20*(2*n-1)*a(n-1). - Fung Lam, Mar 05 2014
a(n) ~ sqrt(5+5*sqrt(10)) * (20+2*sqrt(10))^n / (10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014
MATHEMATICA
a[0] = 1; a[1] = 1; a[n_] := (360 (2 - n) a[n - 2] + 20 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 04 2014 *)
CoefficientList[Series[(1-Sqrt[1-40*x*(1-9*x)])/(20*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 04 2002
STATUS
approved