login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158601
a(n) = 400*n^2 + 20.
2
20, 420, 1620, 3620, 6420, 10020, 14420, 19620, 25620, 32420, 40020, 48420, 57620, 67620, 78420, 90020, 102420, 115620, 129620, 144420, 160020, 176420, 193620, 211620, 230420, 250020, 270420, 291620, 313620, 336420, 360020, 384420, 409620, 435620, 462420, 490020
OFFSET
0,1
COMMENTS
The identity (40*n^2 + 1)^2 - (400*n^2 + 20)*(2*n)^2 = 1 can be written as A158602(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: -20*(1 + 18*x + 21*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) + 1)/40.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) + 1)/40. (End)
MATHEMATICA
400 Range[0, 40]^2+20 (* Harvey P. Dale, Feb 05 2011 *)
LinearRecurrence[{3, -3, 1}, {20, 420, 1620}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
PROG
(Magma) I:=[20, 420, 1620]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
(PARI) for(n=0, 40, print1(400*n^2 + 20", ")); \\ Vincenzo Librandi, Feb 16 2012
CROSSREFS
Sequence in context: A355966 A068772 A230349 * A268738 A358108 A215290
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 22 2009
EXTENSIONS
Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009
STATUS
approved