The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158602 a(n) = 40*n^2 + 1. 2
 1, 41, 161, 361, 641, 1001, 1441, 1961, 2561, 3241, 4001, 4841, 5761, 6761, 7841, 9001, 10241, 11561, 12961, 14441, 16001, 17641, 19361, 21161, 23041, 25001, 27041, 29161, 31361, 33641, 36001, 38441, 40961, 43561, 46241, 49001, 51841, 54761, 57761, 60841, 64001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The identity (40*n^2 + 1)^2 - (400*n^2 + 20)*(2*n)^2 = 1 can be written as a(n)^2 - A158601(n)*A005843(n)^2 = 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link] Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: -(1 + 38*x + 41*x^2)/(x-1)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). From Amiram Eldar, Mar 16 2023: (Start) Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)) + 1)/2. Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)) + 1)/2. (End) MAPLE A158602:=n->40*n^2; seq(A158602(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013 MATHEMATICA 40*Range[0, 40]^2+1 (* or *) LinearRecurrence[{3, -3, 1}, {1, 41, 161}, 40] (* Harvey P. Dale, Jul 25 2011 *) Table[40n^2+1, {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *) PROG (Magma) I:=[1, 41, 161]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012 (PARI) for(n=0, 40, print1(40*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 16 2012 CROSSREFS Cf. A005843, A158601. Sequence in context: A105100 A141988 A347075 * A245743 A142839 A142912 Adjacent sequences: A158599 A158600 A158601 * A158603 A158604 A158605 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 22 2009 EXTENSIONS Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 16:57 EDT 2024. Contains 372880 sequences. (Running on oeis4.)