login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158604
a(n) = 42*n^2 + 1.
3
1, 43, 169, 379, 673, 1051, 1513, 2059, 2689, 3403, 4201, 5083, 6049, 7099, 8233, 9451, 10753, 12139, 13609, 15163, 16801, 18523, 20329, 22219, 24193, 26251, 28393, 30619, 32929, 35323, 37801, 40363, 43009, 45739, 48553, 51451, 54433, 57499, 60649, 63883, 67201
OFFSET
0,2
COMMENTS
The identity (42*n^2 + 1)^2 - (441*n^2 + 21)*(2*n)^2 = 1 can be written as a(n)^2 - A158603(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: -(1 + 40*x + 43*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(42))*Pi/sqrt(42) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(42))*Pi/sqrt(42) + 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 43, 169}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
PROG
(Magma) I:=[1, 43, 169]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
(PARI) for(n=0, 40, print1(42*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 16 2012
CROSSREFS
Sequence in context: A142016 A140640 A083357 * A057816 A162295 A187722
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 22 2009
EXTENSIONS
Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009
STATUS
approved