login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105100
Sum of ordered 3 prime sided prime triangles.
2
41, 156, 304, 462, 630, 834, 1020, 1214, 1420, 1618, 1824, 2076, 2288, 2514, 2712, 2926, 3198, 3460, 3656, 3874, 4086, 4370, 4598, 4888, 5100, 5346, 5626, 5886, 6126, 6332, 6580, 6836, 7146, 7386, 7678, 7848, 8208, 8560, 8762, 8962, 9258, 9498, 9696
OFFSET
1,1
COMMENTS
An ordered 3 prime sided prime triangle is 6 consecutive primes arranged in an equilateral triangle of the form
...........p(6n-5)
.....p(6n-4).....p(6n-3)
.p(6n-2)...p(6n-1)......p(6n)
LINKS
EXAMPLE
The first 3 prime sided prime triangle
2
3 5
7 11 13
adds up to 41, the first entry.
MATHEMATICA
Total/@Partition[Prime[Range[300]], 6] (* Harvey P. Dale, Apr 30 2022 *)
PROG
(PARI) sumtri3x3(n) = { local(x, j, s); forstep(x=1, n, 6, s = prime(x)+prime(x+1)+prime(x+2)+prime(x+3)+prime(x+4)+prime(x+5); print1(s", ") ) }
CROSSREFS
Sequence in context: A259835 A082252 A221811 * A141988 A347075 A158602
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Apr 07 2005
STATUS
approved