login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358108
a(n) = 16^n * Sum_{k=0..n} binomial(-1/2, k)^2 * binomial(n, k).
3
1, 20, 420, 9296, 216868, 5313360, 135866640, 3599688000, 98122746660, 2735243498960, 77595234251920, 2231860533960000, 64904359322352400, 1904342118510144320, 56285527873777258560, 1673824975976543421696, 50036226313229526706980, 1502471400349641645458640
OFFSET
0,2
COMMENTS
Belongs to the family of Apéry-like sequences.
FORMULA
a(n) = 16^n * hypergeom([1/2, 1/2, -n], [1, 1], -1).
a(n) ~ 2^(5*n + 1) / (Pi*n). - Vaclav Kotesovec, Nov 12 2022
MAPLE
a := n -> 16^n*add(binomial(-1/2, k)^2*binomial(n, k), k = 0..n):
seq(a(n), n = 0..17);
MATHEMATICA
a[n_] := 16^n * HypergeometricPFQ[{1/2, 1/2, -n}, {1, 1}, -1]; Array[a, 18, 0] (* Amiram Eldar, Nov 12 2022 *)
PROG
(Python)
from sympy import binomial, S
def A358108(n): return (1<<(n<<2))*sum(binomial(-S.Half, k)**2*binomial(n, k) for k in range(n+1)) # Chai Wah Wu, Nov 13 2022
CROSSREFS
Cf. A143583.
Sequence in context: A230349 A158601 A268738 * A215290 A130832 A180810
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 12 2022
STATUS
approved