OFFSET
0,2
COMMENTS
The factorially normalized Bernoulli polynomials are defined inductively by:
b(0, x) = 1, (d/dx) b(n, x) = b(n-1, x), and Integral_{x=0..1} b(n, x) = 0.
REFERENCES
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, 1924. (page 31)
LINKS
Yassine El Maazouz and Jim Pitman, The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution, arXiv:2210.02027 [math.PR], Oct. 2022.
FORMULA
T(n, k) = ([x^k] b(n, x))^(-1), provided [x^k] b(n, x) != 0, otherwise 0.
Integral_{x=0..1} b(n, x)*b(m, x) = (-1)^(m + 1)*b(n + m, 1). [N. E. Nørlund]
Note that n!*b(n, 1) are the Bernoulli numbers (with B_1 = 1/2).
EXAMPLE
0] 1;
1] -2, 1;
2] 12, -2, 2;
3] 0, 12, -4, 6;
4] -720, 0, 24, -12, 24;
5] 0, -720, 0, 72, -48, 120;
6] 30240, 0, -1440, 0, 288, -240, 720;
7] 0, 30240, 0, -4320, 0, 1440, -1440, 5040;
8] -1209600, 0, 60480, 0, -17280, 0, 8640, -10080, 40320;
9] 0, -1209600, 0, 181440, 0, -86400, 0, 60480,-80640, 362880;
MAPLE
T := proc(n, k) coeff(bernoulli(n, x) / n!, x, k); ifelse(% = 0, 0, 1/%) end:
seq(seq(T(n, k), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_] := With[{c = Coefficient[BernoulliB[n, x]/n!, x, k]}, If[c == 0, 0, 1/c]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2024, after Maple code *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 30 2022
STATUS
approved