login
A358112
Table read by rows. A statistic of permutations of the multiset {1,1,2,2,...,n,n}.
0
1, 5, 1, 47, 42, 1, 641, 1659, 219, 1, 11389, 72572, 28470, 968, 1, 248749, 3610485, 3263402, 357746, 4017, 1, 6439075, 204023334, 371188155, 95559940, 3853617, 16278, 1, 192621953, 12989570167, 43844432805, 22448025251, 2216662051, 38270373, 65399, 1
OFFSET
1,2
COMMENTS
Table 1, page 12 in Maazouz and Pitman (note a typo in T(2, 0)).
FORMULA
T(n, k) = P(n, k+1) - P(n, k), where P(n, x) = (2*n)!*Sum_{k=0..n} Sum_{j=0..n-k} binomial(n, k)*binomial(n-k, j)*(-1)^(n-k-j)*max(x - k, 0)^(2*n - j)/(2*n - j)!.
EXAMPLE
[n\d] 0 1 2 3 4 5 6
-----------------------------------------------------------------------------
[1] 1;
[2] 5, 1;
[3] 47, 42, 1;
[4] 641, 1659, 219, 1;
[5] 11389, 72572, 28470, 968, 1;
[6] 248749, 3610485, 3263402, 357746, 4017, 1;
[7] 6439075, 204023334, 371188155, 95559940, 3853617, 16278, 1
[8] 192621953, 12989570167, 43844432805, 22448025251, 2216662051, 38270373,
65399, 1
MAPLE
P := (n, x) -> (2*n)!*add(add(binomial(n, k)*binomial(n-k, j)*
(-1)^(n-k-j)*max(x - k, 0)^(2*n - j)/(2*n - j)!, j = 0..n-k), k = 0..n):
Trow := n -> seq(P(n, k+1) - P(n, k), k = 0..n-1):
seq(print(Trow(n)), n = 1..8);
CROSSREFS
Cf. A006902 (row 0), A000680 (row sums).
Sequence in context: A134273 A048897 A049029 * A051150 A144341 A144342
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 30 2022
STATUS
approved