login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144341
Partition number array, called M32hat(-5)= 'M32(-5)/M3'= 'A144268/A036040', related to A011801(n,m)= |S2(-4;n,m)| (generalized Stirling triangle).
3
1, 5, 1, 55, 5, 1, 935, 55, 25, 5, 1, 21505, 935, 275, 55, 25, 5, 1, 623645, 21505, 4675, 3025, 935, 275, 125, 55, 25, 5, 1, 21827575, 623645, 107525, 51425, 21505, 4675, 3025, 1375, 935, 275, 125, 55, 25, 5, 1, 894930575, 21827575, 3118225, 1182775, 874225, 623645
OFFSET
1,2
COMMENTS
Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M32hat(-5;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
If M32hat(-5;n,k) is summed over those k with fixed number of parts m one obtains triangle S2hat(-5):= A144342(n,m).
FORMULA
a(n,k)= product(|S2(-5,j,1)|^e(n,k,j),j=1..n) with |S2(-5,n,1)|= A008543(n-1) = (6*n-7)(!^6) (6-factorials) for n>=2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Formally a(n,k)= 'M32(-5)/M3' = 'A144268/A036040' (elementwise division of arrays).
EXAMPLE
a(4,3)= 25 = |S2(-5,2,1)|^2. The relevant partition of 4 is (2^2).
CROSSREFS
A144284 (M32hat(-4) array).
Sequence in context: A049029 A358112 A051150 * A144342 A144268 A013988
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang Oct 09 2008
STATUS
approved