OFFSET
0,2
FORMULA
a(n) = 16^n * hypergeom([1/2, -n], [1], -1).
D-finite with recurrence a(n) = (24*(2*n - 1)*a(n - 1) - 512*(n - 1)*a(n - 2)) / n for n >= 2.
a(n) ~ 2^(5*n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 12 2022
a(n) = 4^n*A098410(n). - R. J. Mathar, Jan 25 2023
MAPLE
ogf := (16*x*(32*x - 3) + 1)^(-1/2): ser := series(ogf, x, 20):
seq(coeff(ser, x, n), n = 0..17);
MATHEMATICA
a[n_] := 16^n * HypergeometricPFQ[{1/2, -n}, {1}, -1]; Array[a, 18, 0] (* Amiram Eldar, Nov 12 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 12 2022
STATUS
approved