login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097192
Main diagonal of triangle A097190, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097191(y)^(n+1), where R_n(1/3) = 9^n for all n>=0.
4
1, 24, 612, 15912, 417690, 11027016, 292215924, 7764594552, 206732329947, 5512862131920, 147193418922264, 3934078651195056, 105236603919467748, 2817102935690367408, 75458114348849127000, 2022277464549156603600
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = 1/(1-27*x)^(8/9).
a(n) = (n+1)*A097193(n).
Conjecture: n*a(n) +3*(1-9*n)*a(n-1) = 0. - R. J. Mathar, Nov 16 2012
MAPLE
seq(coeff(series(1/(1-27*x)^(8/9), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
MATHEMATICA
CoefficientList[Series[(1-27*x)^(-8/9), {x, 0, 20}], x] (* G. C. Greubel, Sep 17 2019 *)
PROG
(PARI) a(n)=polcoeff(1/(1-27*x+x*O(x^n))^(8/9), n, x)
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(1-27*x)^(8/9) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097192_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P(1/(1-27*x)^(8/9)).list()
A097192_list(20) # G. C. Greubel, Sep 17 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2004
STATUS
approved