login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097194
Row sums of triangle A097190, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097191(y)^(n+1), where R_n(1/3) = 9^n for all n>=0.
2
1, 25, 649, 17065, 451621, 11998801, 319623445, 8530126057, 227974775239, 6099550226965, 163340461497907, 4377292845062689, 117376545230379631, 3149059523347103293, 84522568856319875179, 2269506752111508954553
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = 3/((1-27*x) + 2*(1-27*x)^(8/9)).
G.f.: A(x, y) = A097192(x)/(1 - x*A097193(x)).
MAPLE
seq(coeff(series(3/((1-27*x) +2*(1-27*x)^(8/9)), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
MATHEMATICA
CoefficientList[Series[3/((1-27*x) +2*(1-27*x)^(8/9)), {x, 0, 20}], x] (* G. C. Greubel, Sep 17 2019 *)
PROG
(PARI) a(n)=polcoeff(3/((1-27*x) + 2*(1-27*x+x*O(x^n))^(8/9)), n, x)
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 3/((1-27*x) +2*(1-27*x)^(8/9)) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097194_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P(3/((1-27*x) +2*(1-27*x)^(8/9))).list()
A097194_list(20) # G. C. Greubel, Sep 17 2019
CROSSREFS
Cf. A097190.
Sequence in context: A152256 A153111 A361712 * A180811 A318183 A015697
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2004
STATUS
approved