This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097196 Expansion of psi(x^3)^2 / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions. 3
 1, 0, 1, 2, 2, 2, 4, 4, 6, 8, 9, 12, 16, 18, 22, 28, 33, 40, 50, 58, 70, 84, 98, 116, 138, 160, 188, 222, 256, 298, 348, 400, 463, 536, 614, 706, 812, 926, 1060, 1212, 1378, 1568, 1785, 2022, 2292, 2598, 2932, 3312, 3740, 4208, 4736, 5328, 5978, 6708, 7522, 8416, 9416 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS On page 63 of Watson 1936 is an equation with left side 2*rho(q) + omega(q) and the right side is 3 times the g.f. of this sequence. - Michael Somos, Jul 14 2015 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 50, Eq. (25.4). George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016. George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-2/3) * eta(x^6)^4 / (eta(x^2) * eta(x^3)^2) in powers of q. - Michael Somos, Jul 14 2015 G.f.: Product_{n >= 1} (1+q^(3*n))^4*(1-q^(3*n))^2/(1-q^(2*n)). 3 * a(n) = A053253(n) + 2 * A053255(n). - Michael Somos, Jul 29 2015 a(n) ~ exp(Pi*sqrt(n/3)) / (12*sqrt(n)). - Vaclav Kotesovec, Oct 14 2015 EXAMPLE G.f. = 1 + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 8*x^9 + ... G.f. = q^2 + q^8 + 2*q^11 + 2*q^14 + 2*q^17 + 4*q^20 + 4*q^23 + 6*q^26 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(3/2)]^2 / (4 x^(3/4) QPochhammer[ x^2]), {x, 0, n}]; (* Michael Somos, Jul 14 2015 *) nmax=60; CoefficientList[Series[Product[(1+x^(3*k))^4 * (1-x^(3*k))^2 / (1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^4 / (eta(x^2 + A) * eta(x^3 + A)^2), n))}; /* Michael Somos, Jul 14 2015 */ CROSSREFS Cf. A053253, A053255. Sequence in context: A326457 A326543 A326682 * A132325 A308920 A308976 Adjacent sequences:  A097193 A097194 A097195 * A097197 A097198 A097199 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 17 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 13:26 EST 2019. Contains 329751 sequences. (Running on oeis4.)